首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
石油的勘探开发遍布我国各地区,其产品的应用与工农业生产和人民日常生活密不可分。石油及石油制品在使用过程中泄漏到土壤中不断累积,会破坏生态环境。激光诱导荧光(LIF)是检测土壤中石油烃类有机污染物的重要方法。激光脉冲能量是LIF的重要实验参数,对检测灵敏度,稳定性有显著影响。为探究土壤中石油烃的激光诱导荧光信号随激发光脉冲能量变化的特性,以机油为例,在实验室制备了机油浓度为0.5%~6%的土壤样品,使用Nd∶YAG激光器作为激发光源,通过改变266 nm激光的脉冲能量,获取不同能量密度下油污土壤的荧光光谱。实验结果表明,土壤和土壤中机油的荧光光谱强度随激光脉冲能量的增加而增加,但增加到一定程度后增幅明显减小。原因是虽然激光能量密度逐渐增强荧光强度也在增强,土壤中单位面积的有机物含量有限,部分有机质已经被光解,有机物被激发的荧光趋于饱和。在适当的能量密度下,土壤中机油的荧光强度与其浓度有良好线性关系。实验发现,随着激光能量密度的减小, LIF系统测量机油的平均相对误差先减小后增大,其原因是,当激光能量密度小于一定范围时,信号的信噪比随之减小,因此测量的平均相对误差逐渐增大;当激光能量密度大于一定范围时,虽然信号的信噪比随之增大,但已经逐渐超出系统最佳的测量范围,所以测量的平均相对误差逐渐增大。当激光能量密度在2.4~4.0 mJ·cm~(-2)时,土壤中机油的荧光强度随激光脉冲能量密度线性增强,且对机油浓度的测量误差均小于2.5%,检测限在200~300 mg·kg~(-1)之间。当能量密度大于4.0mJ·cm~(-2)时,机油的荧光强度增幅显著降低,测量误差也随之增大。因此,兼顾LIF测量土壤中机油的平均相对误差和测量检测限,激光脉冲能量选择2.4~4.0 mJ·cm~(-2)较优。所述方法也可扩展其他土壤中石油烃荧光信号检测。  相似文献   

2.
利用激光诱导荧光技术可对土壤中石油类污染物快速检测,不同土壤物理性质下,污染物荧光发射特征具有一定差异。为实现外场检测时快速制备合适的土壤样品,实验研究了土壤疏松度、颗粒度、湿度与土壤中石油类污染物荧光强度及光谱稳定性之间的关系。压片机压强大于2 MPa时土壤样品荧光光谱的稳定性较好,九种不同疏松度的土壤样品荧光强度的相对标准偏差为3.51%。不同粒径的机油土壤样品荧光强度差异较小,其中100目土壤样品的荧光光谱RSD值为2.25%。结果表明,土壤样品表面呈平整洁净时,所得样品荧光光谱的稳定性较好,土壤疏松度和颗粒度对荧光光谱的影响较小。湿度对土壤样品荧光发射的影响较大,当土壤湿度低于10%,荧光强度变化较小;湿度范围大于10%时,荧光强度变化较大。为利用LIF技术对外场土壤中石油类污染物检测时,快速有效制备土壤样品及准确测量提供参考。  相似文献   

3.
用特征光谱荧光标记技术分析水中溶解有机物特性   总被引:11,自引:3,他引:8  
讨论了一种自然水体中有机物的快速诊断分析方法。介绍了总荧光光谱(TLS)和特征光谱荧光标记(SFS)技术;以激光诱导荧光(LIF)方法测量了水体的总荧光光谱,利用特征光谱荧光标记技术对水体中溶解有机物(DOM)及叶绿素a(Chla)进行了分析,并给出了不同浓度腐殖酸的归一化荧光强度与浓度的关系曲线.结果表明,利用特征光谱荧光标记技术对水体总荧光光谱的分析,可以进行水体污染物的快速、实时和在线监测。  相似文献   

4.
以三维荧光光谱技术结合平行因子分析算法研究了石油类污染物识别与浓度测量方法,重点分析了两种以上成品油共存时对测量的影响。以0#柴油、97#汽油与煤油的CCl4溶液为测量样本,通过两种或三种油不同配比的混合溶液来模拟多种石油类污染物共存的状态,研究平行因子分析方法在复杂混合物共存体系成分分析时的特点。实验分别针对汽柴油混合溶液、柴煤油混合溶液以及存在少量煤油干扰成分的汽柴油溶液,分解得到各溶质的激发与发射特征光谱,实现了各混合样品中主要成分含量的同时测量,计算了平均回收率。结果表明,该方法能够实现石油类污染物中共存成分的识别与浓度测量。  相似文献   

5.
生物柴油是典型的"绿色能源",具备良好的环保性和燃料特性,通常与柴油混合使用在柴油发动机上。但是目前世界各国柴油与生物柴油混合的比例标准参次不齐,没有一个统一的标准,并且不同比例的柴油/生物柴油混合物具有不同的燃烧性能,也会对柴油发动机产生一定程度的影响。为了能够快速、准确的测量柴油/生物柴油混合物中的生物柴油浓度,近红外光谱和拉曼光谱在燃油检测方面已经得到广泛的应用。利用拉曼及近红外光谱对柴油/生物柴油混合物中的生物柴油浓度进行了量化分析研究。首先采集了柴油/生物柴油混合燃油的拉曼光谱及近红外吸收光谱,然后利用平滑、基线校正、归一化等方法对采集到的光谱进行预处理。从光谱图中观察到,在柴油/生物柴油混合物的拉曼光谱和近红外光谱中都有C=O特征光谱区域,且该光谱区域的光谱峰都随生物柴油的浓度增加而越来越明显。拉曼光谱中,随生物柴油浓度变化的主要C=O特征光谱区域是在1 743 cm~(-1)位置处的特征峰,在近红外光谱中,随生物柴油浓度变化的主要C=O特征光谱区域是在4 659 cm~(-1)处的特征峰。然后分别根据强度比方法和偏最小二乘(PLS)回归方法建立了相应的混合燃油中生物柴油浓度预测模型。结合强度比方法建立特征峰强度比的生物柴油浓度预测模型,由混合燃油的拉曼光谱和近红外光谱建立的C=O特征峰线性预测模型相关系数分别为0.947 2和0.996 2;结合偏最小二乘(PLS)回归法建立特征光谱区域的生物柴油浓度预测模型,由混合燃油的拉曼光谱和近红外光谱特征区域建立的相应预测集相关系数(R~2)分别为0.981 5和0.991 2,相应的预测均方根误差(RMSE)分别为0.093 7和0.012 9。结果表明,在混合燃油中,使用近红外光谱中的C=O光谱区域建立的生物柴油浓度预测模型会得到更准确的预测结果。  相似文献   

6.
针对土壤漏油污染的检测、分析和含量预测等实际问题,用关中平原常见普通土壤、柴油、机油及油土混合物为研究对象,设计被不同油种污染以及不同污染程度的土壤光谱特征实验。采用光谱分析的方法来获取光谱指数,测量并分析渗漏相同含量两个油种的油土混合物以及渗漏不同含量同一油种的油土混合物的光谱特征及其差异,根据分析结果建立一个基于反射特征的土壤柴油渗漏含量的光谱预测模型。研究表明:(1)渗漏相同含量不同油种时,渗漏柴油的土壤的反射率低于渗漏机油的土壤;渗漏柴油和机油的土壤均在1 740和2 328 nm附近出现双吸收谷特征,且在每一个吸收谷点处渗漏柴油的土壤的光谱吸收深度和光谱吸收指数均低于渗漏相同含量机油的土壤。(2)建立的土壤柴油渗漏含量的光谱预测模型相关系数r的值达到0.854,说明模型具有较强的稳定性;评价模型预测能力的均方根误差RMSE值为0.016证明该模型具有较好预测能力,可以对土壤柴油渗漏含量进行有效的预测。  相似文献   

7.
高光谱遥感技术是一种有效的监测石油类污染手段,目前主要应用于海上溢油方面,而关于土壤石油烃污染的研究较少。针对土壤石油烃污染研究不足的现状,选取柴油、汽油和机油三种石油烃,开展了石油烃污染紫色土的光谱特征实验研究,分析了紫色土在不同种类石油烃污染及不同污染浓度条件下的光谱特征,提取了含有不同种类石油烃的紫色土光谱吸收特征波段。在此基础上,经过7种光谱变换和相关性分析,筛选出与石油烃含量最敏感的光谱变量,分别采用单变量回归法和多元逐步线性回归法建立了估算模型,并对模型进行了验证。研究表明:含有柴油、机油和汽油的光谱在1 200,1 700和2 300 nm附近均出现了吸收特征,光谱吸收深度表现为:机油>汽油>柴油;多元逐步线性回归法优于单变量回归法,其建立的柴油、机油和汽油的估算模型决定系数均大于0.95,校正均方根误差小于0.47,验证均方根误差小于0.56,估算精度较高。  相似文献   

8.
高光谱遥感技术是一种有效的监测石油类污染手段,目前主要应用于海上溢油方面,而关于土壤石油烃污染的研究较少。针对土壤石油烃污染研究不足的现状,选取柴油、汽油和机油三种石油烃,开展了石油烃污染紫色土的光谱特征实验研究,分析了紫色土在不同种类石油烃污染及不同污染浓度条件下的光谱特征,提取了含有不同种类石油烃的紫色土光谱吸收特征波段。在此基础上,经过7种光谱变换和相关性分析,筛选出与石油烃含量最敏感的光谱变量,分别采用单变量回归法和多元逐步线性回归法建立了估算模型,并对模型进行了验证。研究表明:含有柴油、机油和汽油的光谱在1 200,1 700和2 300nm附近均出现了吸收特征,光谱吸收深度表现为:机油汽油柴油;多元逐步线性回归法优于单变量回归法,其建立的柴油、机油和汽油的估算模型决定系数均大于0.95,校正均方根误差小于0.47,验证均方根误差小于0.56,估算精度较高。  相似文献   

9.
特征荧光光谱法定量检测水质的研究   总被引:1,自引:1,他引:0  
讨论了一种可同时检测自然水体中有机物和叶绿素a含量的快速分析方法。以武汉东湖水为样品,采用激光诱导荧光(LIF)的方法测量了水体的总荧光光谱(TLS);并用特征光谱荧光标记(SFS)技术对水体中溶解的有机物(DOM)及叶绿素a (Chl-a)的荧光光谱特征进行了分析和指认。并利用水的拉曼散射信号强度进行归一化的方法,分别得到较低浓度腐殖酸和叶绿素a的特征光谱归一化荧光强度以及它们在水体中浓度的标定曲线和线性关系式。另外, 对于较高浓度的腐殖酸溶液,确定了其特征光谱的荧光强度与浓度之间满足的函数关系。结果表明,在一定的浓度范围内,特征光谱的荧光强度与浓度之间仍然有很好的线性关系。该方法在自然水体质量的检测方面有广泛的应用前景,它能快速识别水体中的污染物,定量测量它们在水体中的含量,实现对自然水体的质量状况进行大范围的实时动态监测。  相似文献   

10.
为解决微含量石油类污染物识别问题,采用三维荧光光谱(EEMs)与平行因子(PARAFAC)相结合的技术,研究了石油类样品荧光组分特征及平行因子组分识别方法。依据水体中石油类含量的标准规定,配制出与Ⅰ—Ⅴ类水体对应的CCL4含油样品,用来模拟油类污染物成分。首先对97#汽油、0#柴油、普通煤油及CCL4溶剂进行三维荧光光谱扫描,得到纯组分样品的三维荧光光谱图,其次对97#汽油、0#柴油及普通煤油的标准样品进行三维荧光光谱图测定,最后对97#汽油、0#柴油、普通煤油在CCL4溶剂中的混合样品进行三维荧光光谱图测定。在掌握上述不同组分样品的三维荧光光谱特性的基础上,重点分析微含量下97#汽油、0#柴油及煤油混合液的三维荧光光谱,应用平行因子方法解析出样品中三种组分的激发与发射特征光谱以及组分间的浓度比。解决了混合样品荧光光谱出现叠加,用化学分离或单纯荧光分析方法较难识别荧光组分的问题,实现了对微含量含油混合样品的主要组分的识别,并得到混合样品溶液中不同组分间浓度比。  相似文献   

11.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

12.
油类污染物具有破坏海洋生态系统和间接污染大气及土壤的危害,快速、准确地检测污染物的成分及其浓度具有重要意义。由于油类污染物光谱重叠严重,因此难以通过传统荧光分析准确加以区分。本文基于激光诱导荧光技术,以氙灯作为激发光设计荧光光谱检测系统,并对0#柴油、92#汽油和煤油进行扫描和检测,从而获得激发/发射光谱以及最佳激发/发射波长。并对该系统的软件算法部分进行改进,运用Savitzky-Golay卷积平滑直接获得更加精确的激发/发射光谱,更能全面、准确地反映油类物质的荧光特性信息。并与传统的荧光光谱仪得到的光谱图进行对比,经实验验证激光诱导荧光技术的荧光光谱检测系统的有效性,对油类污染物的荧光光谱信号的检测具有更高的灵敏度。  相似文献   

13.
随着海洋溢油问题的日益严重,多种遥感技术被用于海面溢油监测,其中激光诱导荧光(LIF)技术是目前被认为最有效的海面溢油探测技术之一。Hoge等基于LIF技术提出了一种利用拉曼散射光评估薄油膜厚度的积分反演算法并广泛应用于海面溢油探测,针对该算法存在误差较大的问题,提出一种融合拉曼散射光和荧光信号评估海面溢油厚度的反演算法。首先利用拉曼散射光信号反演油膜厚度,然后利用该反演结果计算获取溢油油品的荧光特征光谱,最后利用荧光信号反演油膜厚度。文中推导了利用荧光信号反演油膜厚度的算法,给出了油品荧光特征光谱的逼近算法,并给出了利用荧光信号反演油膜厚度的误差分析。通过实验对该方法进行了验证,选用原油和柴油为实验油品,以波长405 nm的激光作为激发光源,采集波长范围为420~700 nm,采集了海水的背景荧光和拉曼散射光信号、实验油品2,5,10和20 μm等不同厚度油膜的光谱信号。将采集数据分为训练集和测试集,利用训练集数据采用梯度下降法获取油品的荧光特征光谱,利用测试集数据分别采用积分拉曼法和该方法反演油膜厚度。采用积分拉曼法,原油不同厚度油膜反演结果的平均误差分别为12.6%,4.6%,4.4%和2.3%,柴油不同厚度油膜反演结果的平均误差分别为14.0%,7.0%,4.2%和3.6%;采用本文方法,原油不同厚度油膜反演结果的平均误差分别为2.5%,2.2%,1.2%和1.1%,柴油不同厚度油膜反演结果的平均误差分别为3.0%,2.4%,2.7%和1.6%。实验结果表明,2 μm油膜反演结果的误差降低最多,原油和柴油2 μm油膜的反演结果误差分别由12.6%和14.0%降低为2.5%和3.0%,其他厚度油膜反演结果的误差也有较大程度的降低,油膜厚度反演结果的误差均小于3%,采用本文算法可以有效提高油膜厚度反演结果的精度。  相似文献   

14.
汽油、煤油、柴油是由原油加工而成,但其相应馏程特征有所不同,其中汽油的沸程约为35~205 ℃,煤油的沸程约为140~250 ℃,柴油的沸程约为180~370 ℃,同时,其碳链长度有所不同,汽油在C7~C11范围内,煤油在C12~C15范围内,柴油在C15~C18范围内,由于其碳数分布特征有所差异,其荧光光谱也相应有所差别,这是对三类不同油种进行识别与定量检测的基础。由于海洋时常发生油类污染,监测海洋中油类有机物的含量十分重要,采用拟Monte-Carlo方法计算三维荧光光谱特征峰幂次积分,结合最优算法求解最佳特征峰数量及积分区域范围,利用BFGS法解非线性方程组,提出一种光谱重叠的多种矿物油混合物组分含量测定的方法。由于对选定特征区域内确定点列对应峰值的幂次进行累加,对荧光谱线微小变化敏感,从而对组分含量微小变化敏感。同时由于点列的选取,相比于单点测量法,在一定程度上减小了随机误差的影响,可以进一步提高测量灵敏度。以煤油、柴油、汽油为研究对象,将单一油种视为整体,不考虑每种油的具体组分,测量单一油种及混合物的三维荧光光谱及等高线图谱,经最优算法选择六个特征峰进行特征峰幂次积分,测定混合油中组分含量,与峰值法,均值法等单点测量方法相比较,测量灵敏度提高约50倍,实现了混合物组分含量的高精度测量,为不需化学分离直接测定光谱重叠混合物组分含量提供了一种实用算法。  相似文献   

15.
提出了一种以十二烷基硫酸钠(SDS)胶束溶液为溶剂增溶、增敏、增稳石油类物质的新方法。研究了石油类物质的荧光强度随SDS胶束溶液浓度的变化规律,确定了其溶剂SDS胶束溶液的最佳浓度为0.1 mol·L-1。使用FLS920荧光光谱仪测量得到不同稀释浓度的汽油、柴油、煤油SDS胶束溶液的三维荧光光谱矩阵(EEMs),分析了瑞利(Rayleigh)散射、拉曼(Raman)散射以及仪器光谱特性对测量光谱的影响,经过光谱校正,建立了三种油的SDS胶束溶液在激发波长为250~400 nm、发射波长为260~500 nm范围内的三维荧光光谱图,并确定了在一定浓度范围内荧光强度与浓度具有良好的线性关系。在相同条件下,用同样的方法配制各种浓度汽油、柴油、煤油水溶液作对比,验证了SDS胶束溶液作为石油类物质的溶剂可以使水中石油类物质的溶解度增加、荧光强度增大、稳定性更好,实现了石油类物质可以不依赖于某些有毒溶剂萃取,又解决了其水中溶解度低不宜定量的问题。  相似文献   

16.
随着海洋运输业和海洋石油开采业的快速发展,溢油污染日益严重,给海洋环境和海洋生态平衡带来极大威胁。因此海洋溢油污染的治理、改善,成为海洋环境保护工程中刻不容缓的重要工作。而对不同状态溢油的识别则是解决溢油污染问题的基础与关键。海面上的溢油,主要包括未乳化与乳化两个不同阶段。前者以不同厚度的油膜形式存在,后者以不同油水比的溢油乳化物形式存在。不同状态的海面溢油具有不同的元素组成:油膜为纯油分子,乳化溢油为油水混合结构,构建出差异化的荧光基团。在激光作用下具备各自特征的荧光光谱信息,不同状态显示出较为明显的荧光光谱差异。光谱曲线的形状特征是荧光物质物理化学性质的一种外在体现,所以从光谱的特征形状来分析、比较一定的光谱参量可以达到物质分类和物种识别的目的和效果。为了实现海面溢油不同状态的快速分类识别,通过搭建的LIF探测系统,采集了常用成品油不同状态的荧光光谱,光谱曲线对比发现:乳化阶段的光谱会表现出荧光峰个数增多、荧光强度改变、荧光峰位偏移等一系列特征。在此基础上,根据表观统计学原理,提取光谱的均值、标准差、峰度系数、谱线宽度、曲线斜率等特征参量,并将这些特征值进行聚类分析。结果显示: 基于激光诱导荧光光谱的海面溢油聚类分析结果与实际溢油状态是基本一致的。即在已知油种的前提下,该分类方法可较好识别出海面不同的溢油状态。因此该方法可以为海面溢油识别提供一种新思路,也为LIF技术探测质量的提高,应用水平的提升奠定一定的基础。  相似文献   

17.
激光诱导荧光是海洋溢油探测的有效手段之一,但该技术的应用易受自然水体中叶绿素、CDOM等物质荧光信号的干扰。为了寻求排除自然水体荧光干扰的方法,基于532 nm连续激光器搭建了激光诱导偏振荧光实验装置,并针对六种不同密度的模拟溢油样品和自然水体开展了荧光光谱偏振特性研究。实验结果发现,与自然水体的荧光光谱不具有明显的偏振特性不同,所有模拟溢油样品的诱导荧光均具有明显的偏振特性,这一结论说明激光诱导荧光光谱的偏振特性可以作为排除叶绿素、CDOM等物质荧光干扰的依据。实验还发现,溢油样品的荧光偏振性质因样品种类而异。在线偏振光激发下,原油样品荧光偏振度随波长逐渐降低,其中重质原油样品偏振度降低幅度最大,轻质原油样品幅度最小,而柴油样品荧光偏振度没有明显变化;当周期性改变激发光的偏振状态时,所有模拟溢油样品的荧光偏振度随之发生趋势相同的周期性波动,中质样品荧光偏振度波动的幅度低于重质样品,但明显超过轻质样品。这一结果说明,模拟溢油样品诱导荧光偏振度的波长变化特性及对激发光偏振态的响应特性均与样品密度存在一定关联,其偏振特性可以作为辅助油种识别的重要参量。  相似文献   

18.
多环芳烃(PAHs)是一类在自然环境中常见且广泛存在的有毒有害有机物。其主要来源有自然界的各种微生物以及植物的生物合成,富含植被区域的天然火灾,火山的喷发物,化石燃料以及人为工业碳氢化合物的不完全燃烧和运输过程中的石油泄漏等。多环芳烃的毒性较为强烈,具有生物致癌性,遗产毒性和致突变性。它对于人体呼吸系统,循环系统,神经系统有着多方面的危害,是一种重要的有机污染物,因此有必要对多环芳烃的现场监测和分析方法进行研究。目前对于多环芳烃的分析方法主要有化学分析法和光谱分析法。化学分析法包含有前处理的化学滴定法,液相色谱法(LC),高效液相色谱法(HPLC),气相色谱质谱法(GC-MS);光谱学分析法涉及紫外吸收光谱,荧光光谱和三维荧光光谱等。三维荧光光谱同时获得激发波长和发射波长的信息,因而包含的光学信息十分丰富,灵敏度高,光谱特征显著,在实际水体的现场检测和水体样本混合组分的快速研究有明显的优势。常见的三维荧光光谱解析方法有平行因子分析法(PARAFAC),多维偏最小二乘法(N-PLS)等。平行因子分析是分析多环芳烃重叠三维荧光光谱的一种有效方法。但有时由于多种组分的荧光较弱,它对三维荧光光谱的欠定分析并不能得到令人满意的结果。为了从两个样品中提取更多的成分,提出一种基于奇异值分解(SVD)和PARAFAC的方法。首先对每个观测样本进行奇异值分解,根据累积贡献率选取合适的奇异值,构造新的伪样本来突出微弱的荧光信号。然后,将两个观测样品及其对应的伪样品输入PARAFAC,恢复组分光谱。为验证所提方法的有效性,对三组不同荧光强度的多环芳烃重叠三维荧光光谱进行了分析。结果表明,从两个混合样品中提取并识别出6个多环芳烃的纯组分光谱,其分辨发射和激发光谱与标准光谱的相似性均在0.80以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号