首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用高温固相法合成Sr_3P_4O_(13):Ce~(3+),Tb~(3+)荧光粉,通过X射线衍射仪、扫描电子显微镜和荧光光谱仪分析该荧光粉的物相组成、颗粒形貌和发光性能。结果表明:Sr_3P_4O_(13):Ce~(3+)的发射光谱和Sr_3P_4O_(13):Tb~(3+)的激发光谱在300~400 nm有重叠;在近紫外光(290 nm)激发下,该荧光粉发射出Ce~(3+)的蓝光(300~420 nm)和Tb~(3+)的黄绿光(480~500 nm和530~560 nm);当Ce~(3+)的摩尔分数为0.08,Tb~(3+)的摩尔分数从0.01增大到0.09时,Ce~(3+)的4f→5d电子跃迁将能量传递至Tb~(3+)的~5D_3能级和~5D_4能级,Ce~(3+)的发光强度逐渐降低,Tb~(3+)的发光强度逐渐增强,表明Sr_3P_4O_(13)基质中存在Ce~(3+)→Tb~(3+)的能量传递;当掺杂Tb~(3+)的摩尔分数为0.09时,能量传递效率可高达86.46%;样品Sr_(2.61)P_4O_(13):0.24Ce~(3+),0.15Tb~(3+)的色坐标在绿光区域,因此Ce~(3+)和Tb~(3+)共掺杂的Sr_3P_4O_(13)荧光粉可作为绿色荧光材料应用于白色发光二极管。  相似文献   

2.
采用高温熔融法分别制备了高含量Tb~(3+)单掺和Dy~(3+)/Tb~(3+)共掺的镓硼锗硅酸盐(GBSG)发光玻璃,并分析了其光谱性能。根据Dy~(3+)和Tb~(3+)掺杂的镓硼锗硅酸盐(GBSG)玻璃的激发和发射光谱、荧光寿命衰减曲线等特性,探讨了Dy~(3+)与Tb~(3+)之间的能量传递关系。结果表明:玻璃的发光强度和荧光寿命随着Tb~(3+)、Dy~(3+)含量的增加而减少。与相同摩尔浓度的单掺玻璃相比,共掺玻璃发光强度的衰减速率先减慢而后加快。Tb~(3+)、Dy~(3+)离子之间的能量传递方式为无辐射共振能量传递和~4F_(9/2)+~7F_6→~6H_(15/2)+~5D_4交叉弛豫效应。  相似文献   

3.
采用高温熔融法,在还原气氛(CO)下制备了Ce~(3+)掺杂的Gd2O3基氟氧闪烁玻璃,系统地研究了BaF_2对闪烁玻璃密度,光学性能以及闪烁性能的影响。比较了闪烁玻璃与BGO晶体在紫外激发以及X射线激发下的荧光强度。结果表明:BaF_2能增加玻璃的密度,且Ba F2含量越高,玻璃密度越大;BaF_2能增强Ce~(3+)的紫外以及X射线激发发光,BaF_2的最佳摩尔分数为15%;BaF_2含量相同时,由于电荷迁移猝灭以及Gd~(3+)的浓度猝灭,随着Gd_2O_3含量增加,Ce~(3+)的紫外激发以及X射线激发发光强度逐渐降低,X射线激发的光谱积分强度从相当于BGO的143%下降到BGO的19%,荧光寿命从46.5 ns降低到30.5 ns。该玻璃的光致发光强度明显强于BGO晶体,但是闪烁发光却弱于BGO晶体。  相似文献   

4.
通过熔融淬火和后续热处理,成功制备了Tb~(3+)掺杂含LaF_3纳米晶透明锗酸盐微晶玻璃。详细研究了所制备的玻璃和微晶玻璃的发光性质。X射线衍射结果表明,玻璃基体中析出的晶相为纯LaF_3晶体,晶粒尺寸在16~21 nm之间。在377 nm紫外光和X射线激发下,Tb~(3+)掺杂含LaF_3纳米晶的微晶玻璃比Tb~(3+)掺杂的锗酸盐玻璃表现出更强的绿光发射,且绿光发射强度随热处理温度升高和时间的延长而增强。微晶玻璃在X射线激发下的最大积分发光强度约为商用闪烁晶体Bi_4Ge_3O_(12)的40.3%。本研究表明,掺Tb~(3+)含LaF_3纳米晶锗酸盐微晶玻璃在X射线探测中具有潜在的应用前景。  相似文献   

5.
采用溶胶凝胶法合成了CaY_(1-x-y)AlO_4∶xCe~(3+),yTb~(3+)荧光粉,探讨了稀土离子Ce~(3+)、Tb~(3+)单掺及共掺对样品发光性能的影响。研究结果表明,合成的样品为四方晶系的纯相。在368nm光激发下,CaY_(1-x)AlO_4∶xCe~(3+)发射蓝光,发射峰位于445nm附近;在246nm光激发下,CaY_(1-y)AlO_4∶yTb~(3+)发射绿光,发射峰位于418,440,491,548,589,625nm附近。在Ce~(3+)/Tb~(3+)共掺荧光粉中,Ce~(3+)的能量可传递给Tb~(3+),使Tb~(3+)的发光增强;当用368nm或378nm光激发共掺荧光粉时,Tb~(3+)呈现强烈的绿光发射。调整Ce~(3+)与Tb~(3+)的掺杂浓度可以调整对应的蓝光与绿光的发射强度。  相似文献   

6.
制备并研究了Ce~(3+)和Tb~(3+)掺杂碱土硼酸盐(LKZBSB)玻璃及该体系玻璃的光致发光特性,观察到起源于Ce~(3+)和Tb~(3+)发光中心的蓝紫色和绿色荧光。波长为487,543,586和621nm的发射峰分别归属于Tb~(3+)的5 D4→7 F6,5 D4→7 F5,5 D4→7 F4和5 D4→7 F3发射跃迁,389nm的宽带发射峰归属于Ce~(3+)的5d→4f电偶级允许跃迁。通过Ce~(3+)引入,LKZBSB玻璃中Tb~(3+)可见光发射的有效激发波长范围显著扩大,尤其在中波紫外激发下,Ce~(3+)/Tb~(3+)共掺样品中Tb~(3+)的绿光发射强度相对于Tb~(3+)单掺样品,增强系数高达73倍。结果表明,在Ce~(3+)/Tb~(3+)掺杂LKZBSB玻璃中,紫外辐射可有效转换成可见光,作为光转换层对增强型太阳能电池的研发具有重要的应用价值。  相似文献   

7.
采用高温固相法制备了BaAl_2Si_2O_8∶Tb~(3+),Ce~(3+)系列的荧光材料,讨论了Tb~(3+),Ce~(3+)单掺及Tb~(3+),Ce~(3+)共掺样品的光谱性质及发光机理,分析了Ce~(3+)与Tb~(3+)之间的能量传递过程。通过对样品进行XRD,荧光光谱,色坐标等测试。结果表明,Tb~(3+),Ce~(3+)的掺杂没有改变BaAl_2Si_2O_8晶体的结构。BaAl_2Si_2O_8∶Tb~(3+)发出明亮的绿光,发光峰分别位于487,545,583和621nm对应于Tb~(3+)的5 D4→7 FJ(J=6,5,4,3)特征发射。Ce~(3+)的掺入没有改变BaAl_2Si_2O_8∶Tb~(3+)发射光谱的位置,但使其激发谱由窄带激发变成了宽带激发增加了谱带多样性,发光强度有了明显的增强,而且颜色也具有一定的协调性,使其在实际运用方面具有更大的灵活性。发光强度增强的原因不仅仅是因为Ce~(3+)的敏化作用,还与Ce~(3+)和Tb~(3+)之间存在能量传递有密切关系。通过猝灭法计算了,Ce~(3+)与Tb~(3+)之间的能量传递的临界距离为15.345nm,并且证明了能量传递是由偶极-偶极相互作用产生的。通过计算得到能量传递效率最高达到了76.04%。  相似文献   

8.
采用熔融淬冷法制备得到透明的Tm~(3+)/Er~(3+)/Yb~(3+)掺杂镓锗钠玻璃。对比研究了808 nm和980 nm激发下Tm_2O_3含量对样品可见-红外光学光谱特性的影响。结合稀土离子能级结构,分析了Tm~(3+)、Er~(3+)和Yb~(3+)离子之间的能量传递机制。结果表明:在808 nm和980 nm的激发下,Tm~(3+)/Er~(3+)/Yb~(3+)掺杂样品中均观察到了473,655,521,544 nm的蓝、红和绿光。在808 nm激发下,随着Tm~(3+)浓度的增加,Tm~(3+):1 800 nm和Er~(3+):1 530 nm发射强度的比率I1.8/I1.53逐渐增大。由于在Tm~(3+)和Er~(3+)间的能量传递有效地改变了红光和绿光的发射强度,473,521,655 nm的发光强度呈现先升高再降低的趋势,在Tm_2O_3掺杂摩尔分数为0.3%时达到最大值。而在980 nm激发下,由于Yb~(3+)对Er~(3+)和Tm~(3+)的能量传递起主要作用,使得其上转换红光(655 nm)、绿光(521 nm和544 nm)和蓝光(473 nm)的发光强度高于808 nm激发下的上转换发光。  相似文献   

9.
《发光学报》2021,42(9)
宽带荧光转换发光二极管(LED)用荧光玻璃具有良好的热稳定性和光学性质,可以避免传统的有机树脂封装荧光粉方案中存在的热稳定性差和重吸收问题,提高LED的使用寿命和发光效率。本文采用熔融淬冷法制备了一种连续可调宽光谱的Ce~(3+)/Mn~(2+)共掺氟硅酸盐玻璃,并对其发光性能进行了研究。为了探究Ce~(3+)/Mn~(2+)之间的能量传递,分别制备了掺Ce~(3+)、掺Mn~(2+)氟硅酸盐玻璃作为比对。结果表明,在紫外光激发下,可以观察到Ce~(3+)对Mn~(2+)发光的敏化现象,分别由掺Ce~(3+)荧光玻璃的蓝光发射和掺Mn~(2+)荧光玻璃的黄色发射,拓展为Ce~(3+)/Mn~(2+)共掺荧光玻璃的白光宽光谱发射,范围为380~780 nm;对比掺Mn~(2+)的荧光玻璃,Ce~(3+)/Mn~(2+)共掺荧光玻璃中Mn~(2+)的发光强度提升了3倍;随着Mn~(2+)浓度从0.8%增加到2.0%,Ce~(3+)向Mn~(2+)的能量传递效率从12.5%提升至24.2%。此外,通过调节紫外激发波长(353~369 nm),实现了从蓝光到红光区域的连续可调宽带发射。这种新型Ce~(3+)/Mn~(2+)共掺玻璃有望替代目前常规的多组分荧光粉LED光源应用于分光光度计、荧光光谱仪等光学领域。  相似文献   

10.
王林香  庹娟  叶颖  赵海琴 《中国光学》2019,12(1):112-121
用微波高温固相法合成了Er~(3+)单掺Lu_2O_3,Li~+与Er~(3+)共掺Lu_2O_3及Li~+,Zn~(2+),Mg~(2+)掺杂Lu_2O_3∶Er~(3+)的荧光粉。实验表明金属离子Li~+、Zn~(2+)、Mg~(2+)、Er~(3+)掺杂Lu_2O_3,不影响Lu_2O_3的立方晶相。扫描电子显微镜测量表明,Li~+掺杂可以有效改善粉体的分散性和形貌,Li~+,Zn~(2+),Mg~(2+)共掺杂获得的粉体颗粒分布更加均匀,粒径范围为80~100 nm。379 nm激发下,Li~+与Er~(3+)共掺样品发光较单掺Er~(3+)样品在565 nm处的发光增强了4.5倍,而Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品较其发光增强5.3倍。980 nm激发下,Li~+与Er~(3+)共掺样品,Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品的发光分别比单掺Er~(3+)样品在565 nm处发光增强23倍与39倍,在662 nm处发光强度分别增强20倍与43倍。379 nm激发下,较单掺Er~(3+)的样品,掺杂Li~+的样品和Li~+,Zn~(2+),Mg~(2+)和Er~(3+)共掺的样品荧光寿命均有所增加,而Zn~(2+)、Er~(3+)共掺及Mg~(2+)、Er~(3+)共掺样品的荧光寿命则有所缩短。  相似文献   

11.
采用高温熔融法制备了Dy3+或Tb3+单掺和Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃。通过对傅里叶变换红外光谱、透射光谱、光致激发和发射光谱、X射线激发发射光谱及荧光衰减曲线的分析,研究Dy3+与Tb3+之间的能量传递关系以及Dy3+对Tb3+激活硅酸盐氟氧闪烁玻璃发光性能的影响。实验结果表明:Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃具有较高的密度和良好的可见区透过率,玻璃的网络结构是由[SiO4]四面体和[AlO4]四面体连接构成。在紫外光激发时,Dy3+单掺玻璃的发光源于Dy3+的4F9/2→6H15/2(483 nm),6H13/2(576 nm)的跃迁发射,而Tb3+单掺玻璃的发光则源于Tb3+的5D4→7F6(489 nm),7F5(544 nm),7F4(586 nm)和7F6(623 nm)的跃迁发射。对于Dy3+/Tb3+共掺玻璃,发射光谱则主要由Tb3+的荧光发射组成。通过对不同波长紫外光激发的发射光谱分析发现,Dy3+/Tb3+共掺闪烁玻璃中存在多种形式的能量传递。在以Dy3+的特征激发452 nm为激发波长时,Tb3+单掺玻璃的发光很弱。但随着Dy3+的引入,通过4F9/2(Dy3+)→5D4(Tb3+)的能量传递,Tb3+发光得到敏化增强。Dy3+/Tb3+共掺玻璃的发光强度随着Dy2O3含量的增多而增强,Dy2O3含量为1 mol%时达到最大,更高Dy2O3含量的样品由于Dy3+的浓度猝灭,减少了向Tb3+的能量传递,发光强度减弱。当激发波长减小到350 nm时,Dy3+和Tb3+均被激发到更高的能级6P7/2(Dy3+)和5L9(Tb3+),此时除了4F9/2(Dy3+)→5D4(Tb3+)的能量传递外,还出现了5D4(Tb3+)→4F9/2(Dy3+)的能量回传。Dy3+掺杂浓度较低时,Dy3+→Tb3+能量传递作用较强,Tb3+发光得到敏化增强。随着Dy2O3含量的增多,Tb3+→Dy3+能量传递作用增强。当Dy2O3含量超过0.4 mol%时,Tb3+→Dy3+能量传递强于Dy3+→Tb3+能量传递,减少了Tb3+的辐射跃迁发光,因此Dy3+/Tb3+共掺玻璃的发光强度开始减弱。由于Gd3+向Dy3+或Tb3+均可进行有效的能量传递,因此在以Gd3+的特征激发274 nm为激发光时,Dy3+/Tb3+共掺玻璃中出现了Dy3+和Tb3+对Gd3+传递能量的竞争。随着Dy2O3含量的增多,Tb3+所获得的能量不断减少,同时伴随着Tb3+→Dy3+能量回传和Dy3+之间的无辐射交叉弛豫作用,Dy3+/Tb3+共掺玻璃的发光强度不断减弱。对Dy3+/Tb3+共掺闪烁玻璃中Tb3+的5D4→7F5荧光衰减曲线分析还发现,随着Dy2O3含量的增多,Tb3+的荧光寿命从2.24 ms缩短到1.15 ms,曲线从单指数形式变为双指数形式,进一步证明玻璃中存在5D4(Tb3+)→4F9/2(Dy3+)的能量回传。X射线激发发射光谱显示,Dy3+的引入对Tb3+激活闪烁玻璃的辐射发光具有很强的负面影响,而这种负面影响不足以通过Dy3+→Tb3+能量传递来弥补,因此Dy3+/Tb3+共掺玻璃的辐射发光强度随着Dy2O3含量的增多而不断减弱。由此可见,在Tb3+激活硅酸盐氟氧闪烁玻璃中,不宜将Dy3+作为敏化剂,用于增强Tb3+的发光。  相似文献   

12.
采用高温固相法合成了LiSrPO4:Tb3+发光材料,测定了荧光粉的激发光谱和发射光谱,该荧光粉的激发主峰位于330~390nm,属于4f→4f电子跃迁吸收,与UVLED管芯相匹配。在紫外激发下的发射峰由位于490nm(5D4-7F6)、545nm(5D4-7F5)、585nm(5D4-7F4)、622nm(5D4-7F3)的四组线状峰构成,对应Tb3+的特征跃迁,其中545nm处最强,呈现绿色发光。考察了掺杂离子浓度对样品发光效率的影响,Tb3+的最佳掺杂摩尔分数为9%,分析了其自身浓度猝灭机理,探讨了敏化剂Ce3+离子的加入对荧光粉发光强度的影响。LiSrPO4:Tb3+是一种适用于白光LED的绿色荧光材料。  相似文献   

13.
采用传统高温熔融法合成了玻璃组成为B2O3-GeO2-15GdF3-(40-x)Gd2O3-xEu2O3(0≤x≤10)的Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃。在硼锗酸盐玻璃基质中,Gd2O3和GdF3稀土试剂的总含量高达55%,从而确保其密度高于6.4 g/cm^3。闪烁玻璃的光学性能通过光学透过光谱、光致发光光谱、X射线激发发射(XEL)光谱和荧光衰减曲线来表征。玻璃中Gd^3+→Eu^3+离子的能量传递通过激发光谱、发射光谱和Gd^3+-Eu^3+离子间距得到证明,同时也确定了在紫外线和X射线激发下Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃的最佳浓度。Judd-Ofelt理论分析了玻璃中Eu―O键的共价性随Eu^3+掺杂浓度增加而显著增强。Eu^3+激活氟氧硼酸锗酸盐闪烁玻璃在80~470 K温度范围内荧光衰减曲线和发射光谱的温度依赖关系最终证实了其具有较好的发光稳定性。  相似文献   

14.
采用熔融-淬冷法制备了Tb3+掺杂锂铝硅酸盐闪烁玻璃,用紫外激发光谱、发射光谱及荧光寿命表征了光致发光性能,用X射线和阴极射线激发测试了辐射致发光性能。研究结果表明:低Tb3+掺杂浓度时,随着其浓度增大,Tb3+间的交叉弛豫增加导致了5D3→7Fj跃迁的能量逐渐向5D4→7Fj迁移转变,5D3激发态的荧光寿命和发射强度均明显下降,5D4-7Fj发射强度逐渐增大。较高Tb3+浓度时,其浓度继续增加会提升非辐射比例,是荧光寿命降低和荧光猝灭的最主要原因。比较光致发光和辐照致发光性能,发现随着激发源的能量上升,会增加激发态5D3能级向5D4能级的能量转移,同时,由于玻璃的密度低会导致辐照致发光效率随激发源的能量上升而下降。  相似文献   

15.
Tb3+掺杂硅酸盐闪烁玻璃发光特性   总被引:2,自引:1,他引:1       下载免费PDF全文
对Tb3+掺杂的硅酸盐闪烁玻璃进行了研究。对玻璃基质、敏化剂、发光激活剂组分进行了优化,改进了熔制温度、保温时间、气氛等工艺条件。根据氟化物具有较好的稀土可溶性,具有相对较低的声子能量,调整了闪烁玻璃中的氟化物含量。讨论了Tb3+离子和Gd3+,Dy3+离子对闪烁玻璃发光性能的影响。闪烁玻璃样品的激发和发射光谱、光衰减时间谱等结果显示:闪烁玻璃基质中由Gd3+和Dy3+离子向发光中心Tb3+离子的无辐射能量共振转移以及在一定浓度范围内Tb3+离子之间的交叉弛豫过程对玻璃的发光性能有重要影响。Tb3+离子在一定浓度范围内具有自敏化效应,随着Tb3+离子浓度的增加,绿色荧光得到增强,蓝紫色荧光减弱,Tb3+掺杂硅酸盐闪烁玻璃的发光性能有明显的提高。  相似文献   

16.
掺铈、钆、铽的三磷酸镧的合成及其光谱   总被引:1,自引:1,他引:0  
本文首次采用溶液沉淀法合成了一系列LaP3O9:Ce、Gd、Tb磷光体.经X射线结构分析表明、它们是较纯的LaP3O9相,系环状结构,属于正交晶系,其晶胞参数为a=11.19(Å),b=8.54(Å),c=7.28(Å).测定了这些化合物的激发和发射光谱、相对亮度及Ce3+的荧光寿命,观察到在此基质中Ce3+与Gd3+光谱重叠,它们之间存在着一定的相互作用,Ce3+能有效地敏化Tb3+,从而大大地增强Tb3+的发射,LaP3O9:Ce、Tb可能成为一种新的高效绿色发光材料.在Ce-Tb共掺的体系中加入少量Gd却使发光亮度稍有下降,这可能是由于Gd3+的竞争吸收和独立发射所致.从Ce3+的荧光寿命变化可知,Ce3+对Gd3+的能量传递较弱,而Ce3+对Tb3+则很有效.  相似文献   

17.
Ce~(3+)掺杂Gd_2O_3基闪烁玻璃的研究   总被引:2,自引:0,他引:2  
实验用高温熔融法制备了Ce3+掺杂Gd2O3基闪烁玻璃样品,Gd2O3含量高达40mol%,测试了不同Ce3+掺杂浓度与Gd2O3基含量玻璃样品的密度、透过、发射、激发光谱及部分闪烁性能。研究了不同Ce3+掺杂浓度与Gd2O3基含量对玻璃样品密度及光谱性能的影响规律。结果表明:Gd2O3含量的增加不仅提高了玻璃的密度,有利于提高玻璃的辐射性能,还增大了玻璃的光碱度,增大Stokes位移,有利于提高闪烁光的发光效率;Ce3+浓度的提高增大了Ce3+间碰撞的几率,产生能量损失,表现出浓度淬灭效应。在Gd2O3基闪烁玻璃中,随Gd2O3含量增加激发峰的红移较小,高Gd2O3含量的氧化物玻璃中存在Gd3+→Ce3+能量转移机制,Gd3+离子可有效地向Ce3+离子传递能量,敏化Ce3+离子的发光。玻璃样品的衰减时间在17-37ns之间。Ce3+掺杂Gd2O3基闪烁玻璃有望在高能物理等领域中获得应用。  相似文献   

18.
采用高温熔融法制备了Tb3+掺杂高密度锗酸盐玻璃。分别测试了该玻璃的透过光谱、密度、荧光光谱、荧光寿命及X射线激发发光光谱,揭示了该玻璃的物理化学性质和发光性质。透过光谱表明该玻璃具有良好的可见光透过率。高含量的Lu2O3和Gd2O3使得玻璃的密度高达6.4 g/cm3。该玻璃在377 nm光和X射线激发下发出强的绿光。544 nm发光的荧光寿命为1.325~1.836 ms。研究结果表明,Tb3+掺杂高密度锗酸盐玻璃是一种可用于慢速事件X射线探测器的候选闪烁材料。  相似文献   

19.
用高温熔融法制备了Eu3+掺杂的碲酸盐闪烁玻璃。测试了Eu3+不同掺杂浓度玻璃样品的密度、差热特性、吸收、发射、激发光谱及X射线激发下的闪烁光谱。研究了不同Eu3+掺杂浓度对玻璃样品的密度、光谱性能的影响规律及掺杂离子的浓度猝灭效应。研究结果表明:Eu3+掺杂碲酸盐具有较大的密度和较强的闪烁发光,随着Eu3+浓度增加,由于Eu3+间的间距减小,共振能量转移几率增大,致使发光强度增强;但当掺杂到7mol%的高浓度时,会发生浓度猝灭效应。  相似文献   

20.
The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号