首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The role of magnetoelastic energy to determine the causes which affect the magnetic anisotropy are reviewed. The simple model used to describe magnetostriction in the new nanostructured materials is reported. Starting from this model the magnetostriction in multilayer samples, of the kind magnetic material/non-magnetic material, is discussed. In particular the fundamental influence of the interlayers is shown. Finally it is demonstrated that by measurement of saturation magnetostriction it is possible to have information on the interlayers thickness and average composition.  相似文献   

2.
The strain behaviors as well as the structural and magnetic changes relative to the pretransition in the Ni50.5Mn24.5Ga25 single crystals have been characterized by various methods, such as pretransition strain, magnetostriction, magnetization measurements, and TEM observations. A large magnetostriction up to 505 ppm measured in the [001] direction of the sample is obtained at the pretransition temperature with only a low magnetic field of about 1 kOe applied along the [010] direction. We found that not only the pretransition strain pronounces a more large change, but also the magnetostriction at a certain temperature exhibits a more large magnitude for field applied along the [010] direction than with field along the [001] direction. It is concluded that the magnetoelastic interaction is responsible for the premartensitic transition, and the magnetoelastic interaction in the [010] direction is stronger than that in the [001] direction.  相似文献   

3.
4.
Magnetoelastic properties of Nd6Fe13Cu intermetallic compound are reported. To study the magnetoelastic behaviour of this compound, the thermal expansion as well as the longitudinal (λl) and transverse (λt) magnetostriction were measured by using the strain gauge method in the selected temperature range of 80-500 K under applied magnetic fields up to 1.5 T. An anomaly and invar-type effects are observed in the linear thermal expansion and α(T) curves at the Néel temperature. The linear spontaneous magnetostriction decreases sharply by approaching the Néel temperature and also shows the short-range magnetic ordering effects when antiferromagnetic-paramagnetic transition occurs. In the low field region, the absolute values of the anisotropic magnetostriction are small and then start to increase with applied magnetic field. Each isofield curve of the anisotropic magnetostriction passes through a minimum and then approaches to zero with increasing temperature. This magnetostriction compensation arises from the difference in the magnetoelastic coupling constants of the sublattices in this compound.  相似文献   

5.
A GaMnAs nanoelectromechanical resonator is used to obtain the first measurement of magnetostriction in a dilute magnetic semiconductor. Resonance frequency shifts induced by field-dependent magnetoelastic stress are used to simultaneously map the magnetostriction and magnetic anisotropy constants over a wide range of temperatures. Owing to the central role of carriers in controlling ferromagnetic interactions in this material, the results appear to provide insight into a unique form of magnetoelastic behavior mediated by holes.  相似文献   

6.
The influence is investigated of crystallographic anisotropy on magnetoelastic acoustic emission signals in interrelation with linear magnetostriction in a nickel monocrystal. A mathematical model is proposed for the measuring channel that sets up a direct proportional dependence between the rms voltage of the MAE signals and the linear magnetostriction of ferromagnets. It is shown experimentally that the MAE signal parameters manifest the anisotropy properties, are independent of the sign of magnetostriction, and reflect the magnetostriction deformation process of the whole bulk of the magnetically reversible crystal.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 36–41, December, 1990.  相似文献   

7.
Non-oriented electrical steel is produced in strip form typically 0.35–1.0 mm thick and containing 0–3 wt% silicon. It is well-known that non-oriented electrical steel is not quite isotropic but has small anisotropy. In the last decade, NKK produced 0.1 mm thick, non-oriented steel 6.5% Si which has applications such as in high-frequency transformer due to its high electrical resistivity, low core losses, near zero magnetostriction, and high permeability. The magnetostriction of 6.5% silicon steel samples with dimensions 280 mm×30 mm×0.1 mm was measured when magnetised sinusoidally between 0.5 and 1.0 T at frequencies between 0.5 and 6 kHz. Test samples were clamped at one end and the peak-to-peak displacement of the free end was measured with the aid of the single-point laser vibrometer. The average peak–peak magnetostriction was 0.2–0.25 με apart from a sharp rise to 1.2 με at 2 kHz magnetising frequency. This agrees well with the predicted value of 2 kHz for l=0.28 m, d=7430 kg/m3 and E=166 GPa. This shows that although the 6.5% silicon steel is often thought of as having near zero magnetostriction, care is needed to avoid lamination lengths corresponding to resonance points which could induce higher noise in laminated cores.  相似文献   

8.
In this paper the influence of mechanical stress on magnetoelastic properties, i.e., magnetostriction and thermal expansion in the neighborhood of a structural phase transition of the Jahn-Teller crystal TmVO4 is investigated experimentally and theoretically. It is shown that the magnetoelastic properties of TmVO4 for a magnetic field H∥[001] do not change the domain structure of the sample, which is rather well described when mechanical stresses in the crystal are taken into account using the parameter . Conversely, for magnetic fields along the direction of spontaneous strain [110] the magnetoelastic properties are primarily caused by reorientation of the Jahn-Teller domains and short-range order effects. It is shown that the “true” magnetostriction of a single-domain crystal for H∥[110] diverges at the phase transition point T c=2.15 K in the absence of mechanical stresses and is strongly decreased by these stresses. Fiz. Tverd. Tela (St. Petersburg) 40, 701–705 (April 1998)  相似文献   

9.
An acoustic impulse excited by a laser pulse generates some transient magnetostriction effects in various ferromagnetic and ferrimagnetic materials. A crystal of small magnetic anisotropy energy gives a steady magnetoelastic oscillation which is resonant with the sample dimension. The other materials show the surface effect only. The temperature dependence is studied up to the Curie temperature. Around the phase transition point the long-wavelength fluctuation of magnetization is excited by the elastic impulse, and some critical phenomena are observed. These effects are discussed by the usual theory of magnetoelastic interaction.  相似文献   

10.
The magnetoelastic properties of iron-rich REFe10V2 (RE=Nd, Y) compounds were studied via magnetostriction and thermal expansion measurements in the 5–300 K range of temperature in up to 6 T external fields. Results of thermal expansion analysis show that the spontaneous magnetostriction of the compounds mostly originates from itinerant magnetization. Besides, the small volume striction appearing in the thermal expansion of the Nd compound close to 50 K suggests the existence of a basal to conical spin re-orientation transition. The volume magnetostriction isotherms of both compounds take minimum values for external field corresponding to the anisotropy field. In addition, the anisotropic and the volume magnetostriction traces of the NdFe10V2 take marked maxima under low field, with a relatively large initial magnetostrictivity, again more pronounced at the conical–axial spin re-orientation transition (TSR=130 K). Analysis of the anisotropic magnetostriction of the Nd compound leads to the conclusion that the contribution of Nd–Fe interactions is negligible. The temperature dependence of volume magnetostriction is in good agreement with prediction of a phenomenological model based upon a fluctuating local band theory. This analysis shows that the difference between the forced volume strictions of Y and Nd compounds below and above TSR originates from the Nd sublattice magnetization.  相似文献   

11.
Epitaxial bubble garnet films grown on non-magnetic garnet substrates exhibit a dominant growth or stress induced uniaxial anisotropy, which is responsible for the stripe and bubble domain structures, and the intrinsic cubic magnetocrystalline anisotropy which can affect bubble device performance. The anisotropy constants have been deduced from measurements of stripe domain nucleation in the garnet films. We extend this measurement technique and its interpretation so that it also yields values of the magnetoelastic interactions.The measurement is based on observing the details of the topography of the nucleating domain structure, specifically the orientation of the nucleating stripe domains as a function of the orientation and magnitude of the applied magnetic field.The interpretation is based on a micromagnetic analysis of the conditions for homogeneous second order stripe domain nucleation. The contributions to the phenomena of the cubic anisotropy and of the magnetostriction are included in the analysis as perturbations.The theory produces predictions which are compatible with qualitative earlier experiments reported in the literature. It provides a satisfactory quantitative account of systematic new observations we have made on a GdTmY bubble garnet film with the specific objective of measuring magnetostriction.Analysis of the experimental data yields strong evidence for a non-cubic component of the magnetostriction possibly associated with the same growth-kinetic mechanism that gives rise to the non-cubic anisotropy. The sign and magnitude of the macroscopic non-cubic magnetoelastic constant is estimated from the experimental results.  相似文献   

12.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

13.
We report on FMR experiments performed for the first time on thin Ni-Mn-Ga films clamped to the mica substrates and then fully released from them. The aim is to evaluate the role of magnetoelastic coupling in stressed Ni-Mn-Ga Heusler alloy films that undergo martensitic transformation. The experimental results show that the difference in the effective magnetization 4π(Meff tubes-Meff films) is negligible in the austenite phase and it increases to about 1–1.5 kG at temperatures well below the martensitic transformation. The data suggests that magnetoelastic coupling in the martensite phase of Ni-Mn-Ga thin films is typical of normal thin magnetic films with magnetostriction of about 50 ppm.  相似文献   

14.
15.
A model to describe the effect of torsional stresses on the magnetoimpedance of amorphous wires with negative magnetostriction is suggested. An approximate expression for the impedance with regard to the spatial distribution of magnetoelastic anisotropy induced by torsional stresses is derived. It is shown that the relative variation of the impedance is maximal near a critical stress value at which the surface magnetic structure of the wire changes. The calculated dependences of the impedance on the external magnetic field and torsional stress are in good qualitative agreement with experimental data for amorphous wires with negative magnetostriction.  相似文献   

16.
The domain structure of Fe-Ga bulk alloys is investigated with magnetic force (MFM) and magneto-optic Kerr microscopy. Published domain observations on this class of materials predominantly reveal maze-like domain patterns that indicate out-of-plane magnetization, i.e. out-of-plane anisotropy. Contrary to the belief that this anisotropy is due to the presence of nanoscale heterogeneities [1] and [2] (Bai et al., 2005, 2009), we show that it is due to a damaged surface layer caused by standard mechanical polishing. The surface conditions in Fe-Ga alloys are more sensitive to stress-induced damage than in pure α-Fe. This is explained as being due to increased magnetostriction. We demonstrate that the damaged surface layer can be removed with an additional polishing step using colloidal amorphous silica. On (0 0 1) bulk crystal surfaces, the domain structures, obtained after the removal of the damaged surface layer, reveal in-plane magnetization with sharp and straight 90° and 180° domain walls that are expected in these alloys.  相似文献   

17.
Experimental results on the thermal expansion and magnetostriction of YFe10V2 composites are reported and the influence of H and N interstitial atoms is studied. The anisotropic magnetostriction is about 30% larger in the composite than in the starting alloy. Also, the anisotropic magnetostriction remains positive after insertion of H (N) ion while the sign of volume magnetostriction changes by hydrogenation. The anisotropic magnetoelastic interactions are enhanced by insertion of H and especially N interstitial atoms. The results are discussed considering the effect of H and N, and of temperature on magnetic anisotropy and microstructure.  相似文献   

18.
A model to describe the influence of torsional stress on nonlinear magnetoimpedance in amorphous wires with negative magnetostriction is proposed. The nonlinear voltage response is found in the framework of the low-frequency approximation taking into account the spatial distribution of the circular magnetic field and the magnetoelastic anisotropy induced by the torsional stress. It is demonstrated that the application of torsional stress results in an increase of the second harmonic amplitude in voltage due to a reinforcement of helical anisotropy in the wire. The second harmonic amplitude is analyzed as a function of external field, torsional stress and current amplitude. The ranges of torsional stress and current amplitude to achieve maximal field sensitivity of the second harmonic are found.  相似文献   

19.
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.  相似文献   

20.
The influence of different heat treatments on the magnetic and magnetoelastic properties of highly magnetostrictive CoFe2O4 has been investigated. The first order cubic anisotropy coefficient, coercive field, magnetostriction and high strain sensitivity were observed to decrease as the heat treatment temperature increased. The saturation magnetization of the samples on the other hand increased with increase in heat treatment temperature. These changes were not accompanied by any observable changes in crystal structure or composition and are indicative of migration of Co2+ from the octahedral sites (B-sites) to the tetrahedral sites (A-sites) and Fe3+ from the A-sites to the B-sites of the spinel structure. Different distributions of the cations at the two distinct lattice sites can strongly affect the magnetic and magnetoelastic properties of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号