首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We report local density-functional calculations using the full-potential linearized muffin-tin orbital method (FP-LMTO) for platinum carbide (PtC) in the, rock-salt (B1), zinc-blende (B3), wurtzite (B4), nickel-arsenide (B8) and PbO (B10) structures. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtC in these phases are determined and compared with available experimental and theoretical data.Our calculations show that the ground state phase of PtC to be zinc-blende (B3) structure at zero pressure and the nickel-arsenide (B8) structure is a high-pressure phase. The transition pressures at which this compound undergoes the structural phase transition from (B3) to (B8) and from (B3) to (B1) are found to be 34.25 and 51.28 GPa, respectively. The highest bulk modulus values in the nickel-arsenide (B8), zinc-blende (B3), rock-salt (B1) and PbO (B10) structures indicate that PtC is a hard material.  相似文献   

2.
本文采用基于密度泛函理论下的第一性原理平面波赝势从头算量子力学方法,对闪锌矿结构AlN、AlP、AlAs和AlSb的电子结构和光学性质进行了研究。分析比较了这些化合物的能带结构、态密度、介电函数及折射率等性质,总结Al与不同Ⅴ族元素形成化合物时的性质变化规律。结果表明,四种材料有着相似的能带结构,都是间接带隙宽禁带半导体,但是在导带底AlN的能态结构与其它三种材料明显不同。随着从AlN到AlSb的变化,光学性质曲线发生红移。  相似文献   

3.
We report local density functional calculations using the full potential linear muffin-tin orbital (FP-LMTO) method for binary platinum nitride (PtN), in five different crystal structures, the rock salt (B1), zinc-blende (B3), wurtzite (B4), nickel arsenide (B8), and PbS (B10) phases. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtN in these phases are determined and compared with the other available experimental and theoretical works.Our calculations confirm in the B3 structure that PtN is found to be mechanically stable with a large bulk modulus B=232.45 GPa and at a sufficiently high pressure the B81 structure would be favoured.The theoretical transition pressure from zinc blende (B3) to NiAs (B81), zinc-blende (B3) to rock-salt (B1) and zinc-blende (B3) to PbO (B10) is determined to be 9.10 GPa, 9.85 GPa and 69.35 GPa, respectively. Our calculation shows also in five different structures for PtN a high bulk modulus is a good indicator of a hard material.  相似文献   

4.
Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (P Wgl ), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthedpy (H), entropy (S), and the heat capacity (Cv ) are also successfully obtained.  相似文献   

5.
Magnetic and electronic structure calculations are carried out for hypothetical zinc-blende (zb) phase of FeX (X=P, As, Sb) by using the full-potential linearized augmented plane wave (FLAPW) method. For zb FeSb, the total energy has been calculated as a function of lattice constant in ferromagnetic (FM) and antiferromagnetic (AFM) states. We found that the ground state of zb FeSb is very stable with respect to compression and expansion of the unit cell. The magnetic moment of zb FeSb in the AFM state is increasing with the lattice constant. The magnetic and electronic structures calculations of FeAs (FeP) are carried out for the lattice constants of GaAs (GaP), InAs (InP), and Si. Our finding shows that AFM is the ground state for all of our calculated zb FeX compounds and do not belong to the class of zb half metallic ferromagnets.  相似文献   

6.
We study the pressure-induced phase transition of wurtzite ZnS using a constant pressure ab initio technique. A first-order phase transition into a rocksalt state at 30–35 GPa is observed in the constant pressure simulation. We also investigate the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations and Gibbs free energies at zero temperature and find that both structures show nearly similar equations of state and transform into a rocksalt structure around 14 GPa, in agreement with experiments. Additionally, we examine the influence of pressure on the electronic structure of the wurtzite and zinc-blende ZnS crystals and find that their band gap energies exhibit similar tendency and increase with increasing pressure. The calculated pressure coefficients and deformation potential are found to be comparable with experiments.  相似文献   

7.
The structural, electronic and optical properties of beryllium chalcogenides BeS, BeSe and BeTe using the full-potential linear augmented plane wave (FP-LAPW) method are investigated. The exchange-correlation energy within the local density approximation (LDA) and the generalized gradient approximation (GGA) are described. The Engel-Vosko (EVGGA) formalism is applied for electronic and optical properties. The structural parameters of our model and the transition pressure from zinc-blende (B3) to the NiAs (B8) phase are confirmed. It is found that these compounds have indirect band gaps except for BeTe in NiAs (B8) phase. The results of reflectivity, refractive index and optical dielectric functions of Be compounds are investigated. An agreement is found between our results and those of other theoretical calculations and the experimental data.  相似文献   

8.
9.
The linear-muffin-tin orbital method is used to study the electronic-energy-band structure of zinc-blende CdS. Incorporating the 4d states of Cd into the valence band gives substantially the main-valenceband width, and yields valenceband features in agreement with the experiment. The calculated equilibrium lattice constant is in accord with the measured result. The fundamental band gap is found to be direct at T point and the value is about 1.21 eV. The band structure calculation shows that the present results are in good agreement with experiments and other calculations.  相似文献   

10.
Ab initio calculations based on the density functional theory within the full-potential linearized augmented plane wave method were carried out to investigate the structural stabilities of the different crystallographic phases, the pressure-induced phase transition and the electronic properties of the platinum carbide (PtC) compound. The zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO) and the tungsten carbide (WC) phases were considered. The exchange and correlation potential was treated by the generalized-gradient approximation using the Perde–Burke–Ernzerhof parameterization. The thermodynamic properties such as variation of the bulk modulus, lattice constant, heat capacity, thermal expansion and Debye temperature versus pressures and temperatures are investigated. The band structure results show the metallic character of the PtC compound in all the considered phases and the present study also shows that the PtC compound crystallizes in the ZB phase at ambient conditions. The theoretical transition pressures from the ZB to RS for the NiAs, PbO and CsCl transformations were also computed.  相似文献   

11.
We report a density functional calculation on the NiAs-type Mn-based pnictides. The total energy as a function of volume is obtained by means of self-consistent tight-binding linear muffin–tin orbital method by performing spin and non-spin polarized calculation. From the present study, we predict a magnetic-phase transition from ferromagnetic (FM) to non-magnetic (NM) around 49 and 35.7 GPa for MnAs and MnSb, respectively. The pressure-induced transition is found to be a second-order transition. The band structure and density of states (DOS) are plotted for FM and NM states. Apart from this the ground-state properties like magnetic moment, lattice parameter and bulk modulus are calculated and are compared with the available results. Under large volume expansion these compounds exist in zinc-blende (ZB) structure, which shows half metallicity. The magnetic moment and equilibrium lattice constants for ZB structure are obtained as well as band structure and DOS are presented.  相似文献   

12.
In this work, we have extended our study of the mechanical properties and the electronic structure of PbTe to include other Pb chalcogenide compounds (PbSe, PbS). The calculations were performed self-consistently using the scalar-relativistic full-potential linearized augmented plane wave method. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) to density-functional theory were applied.The equilibrium lattice constants and the bulk modulus of a number of structures (NaCl, CsCl, ZnS) were calculated as well as the elastic constants for the structures (NaCl, CsCl). The NaCl structure is found to be the most stable one among all the three phases considered. We have found that the GGA predicts the elastic constants in good agreement with experimental data.Both the LDA and GGA were successful in predicting the location of the band gap at the L point of the Brillouin zone but they are inconclusive regarding the value of the band-gap width. To resolve the issue of the gap, we performed Slater-Koster (SK) tight-binding calculations, including the spin-orbit coupling in the SK Hamiltonian. The SK results that are based on our GGA calculations give the best agreement with experiment.Results are reported for the pressure dependence of the energy gap of these compounds in the NaCl structure. The pressure variation of the energy gap indicates a transition to a metallic phase at high pressure. Band structure calculations in the CsCl structure show a metallic state for all compounds. The electronic band structure in the ZnS phase shows an indirect band gap at the W and X point of the Brillouin zone.  相似文献   

13.
The full-potential band-structure scheme based on the linear combination of overlapping nonorthogonal local-orbital (FPLO) is used. The crystal potential and density are represented as a lattice sum of local overlapping nonspherical contributions. The energetic transitions of BN of zinc-blende and wurtzite structures are calculated using the band structure scheme. The energy gap at ambient pressure is found to be indirect for the two structures. The structural properties of two structures of BN are (obtained from the total energy calculations) and the total density of states are calculated. The phase transition parameter of BN is investigated. The ionicity character of BN has been calculated to test the validity of our recent models. The results are in reasonable agreement with experimental and other theoretical results.  相似文献   

14.
The structural parameters and hydrostatic pressure coefficients of CdSxTe1-x in the two phases, namely zinc-blende and NaCl as well as the transition pressures from zinc-blende to NaCl structures at various S concentrations are presented. The calculations are performed using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT) in the local density approximation (LDA), and two developed refinements, namely the generalized gradient approximation (GGA) of Perdew et al. for the structural properties and Engel-Vosko for the band structure calculations. Detailed comparisons are made with published experimental and theoretical data and show generally good agreement. The present results regarding the studied quantities for compositions x in the 0–1 range (0 < x < 1) and for the NaCl phase are predictions and may serve as a reference for experimental work.  相似文献   

15.
First-principles density functional calculations are employed to investigate the effect of electron and hole doping on the equilibrium geometric, magnetic and electronic structure of hypothetical SrC and BaC compounds with the zinc-blende (ZB) crystal structure. Magnetic moments, lattice constants and orbital populations are calculated as a function of doping level. The calculations predict that the geometric, magnetic properties and electronic structure of these compounds are changed drastically upon electron and hole doping.  相似文献   

16.
We present an extended study of single impurity atoms and atomic swaps in half-metallic CrAs, CrSb and CrSe zinc-blende compounds. Although the perfect alloys present a rather large gap in the minority-spin band, all defects under study, with the exception of void impurities at Cr and sp sites and Cr impurities at sp sites (as long as no swap occurs), induce new states within the gap. The Fermi level can be pinned within these new minority states depending on the lattice constant used for the calculations and the electronegativity of the sp atoms. Although these impurity states are localized in space around the impurity atoms and very fast we regain the bulk behavior, their interaction can lead to wide bands within the gap and thus loss of the half-metallic character.  相似文献   

17.
We report results of first-principles total-energy calculations for structural properties of the group I-VII silver iodide (AgI) semiconductor compound under pressure for B1 (rocksalt), B2 (cesium chloride), B3 (zinc-blende) and B4 (wurtzite) structures. Calculations have been performed using all-electron full-potential linearized augmented plane wave plus local orbitals FP-LAPW + lo method based on density-functional theory (DFT) and using generalised gradient approximation (GGA) for the purpose of exchange correlation energy functional. In agreement with experimental and earlier ab initio calculations, we find that the B3 phase is slightly lower in energy than the B4 phase, and it transforms to B1 structure at 4.19 GPa. Moreover, we found AgI has direct gap in B3 structure with a band gap of 1.378 eV and indirect band gap in B1 phase with a bandgap around 0.710 eV. We also present results of the effective masses for the electrons in the conduction band (CB) and the holes in the valence band (VB). To complete the fundamental characteristics of this compound we have analyzed their linear optical properties such as the dynamic dielectric function and energy loss function for a wide range of 0-25 eV.  相似文献   

18.
The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally and theoretically. By using X-ray emission spectroscopy, the Al 3p, Al 3s and N 2p spectral densities are obtained. The corresponding local and partial theoretical densities of states (DOS), as well as the total DOS and the band structure, are calculated by using the full potential linearized augmented plane wave method, within the framework of the density functional theory. There is a relatively good agreement between the experimental spectra and the theoretical DOS, showing a large hybridization of the valence states all along the valence band. The discrepancies between the experimental and theoretical DOS, appearing towards the high binding energies, are ascribed to an underestimation of the valence band width in the calculations, or to extra states in the optical and ionic gaps due to the presence of point defects or impurities. Differences between the wurtzite and zinc-blende phases are small and reflect the slight variations between the atomic arrangements of both phases.Received: 25 October 2004, Published online: 23 December 2004PACS: 78.70.En X-ray emission spectra and fluorescence - 71.20.Nr Semiconductor compounds - 71.15.Mb Density functional theory, local density approximation, gradient and other corrections  相似文献   

19.
The electronic and magnetic properties of the zinc-blende aluminum nitride doped with V and Cr are studied using the density functional theory (DFT), namely the KKR-CPA-PBE method. Pure AlN is found to be a wide band gap semiconductor, and doping V and Cr single impurities generate ferromagnetic half-metallic behavior. Moreover, the values of the formation energy reveal that these compounds are stable systems for all dopant concentrations. A self-consistent energy minimization scheme determines the ferromagnetic state as the stable magnetic state for V- and Cr-doping AlN. A double exchange mechanism is identified as the mechanism responsible for magnetism in our systems. When increasing doping impurities, the total magnetic moments increase linearly and the Curie temperature TC, calculated using the mean-field approximation, shows a significant change. The present findings reveal Cr- and V-doped zinc-blende AlN as potential candidates for high Curie temperature ferromagnetic materials.  相似文献   

20.
The electronic structure and the ferromagnetism of CrS and CrP in the zinc-blende (ZB) phase are investigated by spin-polarized calculations with first-principles plane-wave pseudopotential method within the generalized gradient approximation for the exchange-correlation potential. From the analysis of the spin-dependent density of states, band structure and magnetic moment, we predict that ZB CrS and CrP at their respective equilibrium lattice constant are half-metallic ferromagnets with a magnetic moment of 4.00 and 3.00μB per formula unit, respectively. We also find that the ZB CrS maintains half-metallic ferromagnetism up to 3% compression of lattice constant while the half-metallic ferromagnetism for ZB CrP exists only near its equilibrium lattice constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号