首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.

Purpose

To prospectively evaluate the feasibility of diffusion-weighted magnetic resonance imaging (DWI) for monitoring early treatment response to chemoradiotherapy (CRT) of nasopharyngeal carcinoma (NPC).

Materials and methods

Thirty-one patients with stage III and IV NPC were enrolled in this study from February 2012 to November 2012.T2-weighted and DWI sequences with diffusion factor of 0 and 800mm²/s were performed using a 3.0 T Philips Achieva TX scanner at baseline and 3 days, 20 days (after the first cycle of chemotherapy), 50 days (6 days after radiotherapy initiation) after neoadjuvant chemotherapy (NAC) initiation. The diameter of each primary lesion and target metastatic lymph node before and after the first cycle of NAC was measured and classified into stable disease (SD), partial response (PR) or completed response (CR) based on RECIST 1.1. The apparent diffusion coefficient (ADC) values and changes compared to baseline at each time point were compared between responders (CR and PR) and non-responders (SD). The rates of residual at the end of CRT were compared between these two groups.

Results

A significant increase in ADC was observed at each stage of therapy (P=.001) in lesions of primary and metastatic. The ADC values (ADC), ADC changes (ΔADC) and percentage ADC changes (Δ%ADC) of day 20 in responders were significantly higher than in non-responders for both primary lesions (p=.005, p=.006, p=.008, respectively) and metastatic lymph nodes (p=.002, p=.002, p=.003). Non-responders showed a higher rate of residual for both primary lesions (p=.008) and metastatic lymph nodes (p=.024) than responders.

Conclusions

DW MR imaging allows for detecting early treatment response of NPC. Patients with high ADC values and large ADC increase early after NAC initiation tended to respond better to CRT. Thus, accessing the curative effect of NAC in advanced NPC provides the opportunity to adjust following CRT regimen.  相似文献   

2.
A 49-year-old woman presented with progressive dementia. Diffusion-weighted MR images showed abnormalities in the cerebral cortex as well as the putamen and caudate head bilaterally. MR spectroscopic imaging revealed marked asymmetric decrease of normal metabolites in the right basal ganglia, with concordant hypoperfusion on single photon emission computed tomography. Diffusion-weighted MR imaging is more sensitive to cortical involvement in sporadic Creutzfeldt-Jakob Disease, and MR spectroscopy may yield evidence of asymmetric involvement. Combined functional and metabolic MR imaging may be useful in studying CJD.  相似文献   

3.
PURPOSE: To demonstrate drop in brain ADC measurements from low to high b values; to evaluate the structural information provided based on those changes; and to discuss the anatomical reasons for ADC differences. METHODS: Four cerebral ROI (precuneus-PRC, hippocampus-HIP, and the genu-GCC and splenium-SCC of the corpus callosum-CC) were drawn for ADC measurements with low (1000) and high (3000) b-value DWI in 50 normal subjects. ANOVA and Bonferroni correction tested ADC differences between areas, between both hemispheres, between GCC and SCC, and between b-value related ADC drop within areas. Pearson test evaluated dependence of interhemispheric and intercallosum ADC measurements obtained with the same b-value, dependence between areas of intrazonal drop, and the interhemispheric and intercallosum dependence of intrazonal drop. RESULTS: ADCs differed between areas (P<.0001). Interhemispheric ADC only differed in PRC with low b-value (P<.027). No HIP asymmetries occurred regardless the b-value. ADC drop within PRC and HIP was similar but differed (P<.0001) from ADC drop within both CC ROI. ADC drop was also different between GCC and SCC (P<.0001). In PRC and HIP, ADC showed a significant interhemispheric and intrazonal dependence (P<.0001). There was no GCC to SCC ADC dependence. Intrazonal dependence in the CC was only significant in the SCC (P<.001). Interhemispheric dependence of intrazonal drop was significant (PRC P=.007; HIP P<.0001) but failed to reach significance in the CC. CONCLUSION: Low and high b-value measurements show different diffusion behaviours within different tissues, especially in a highly anisotropic structure as the corpus callosum. This fact can provide valuable information about brain structure and different diffusion compartments in clinical DWI.  相似文献   

4.
A 55 year old female receiving gemcitabine for stage IV non-small cell carcinoma of the lung developed the clinical-radiologic syndrome of posterior reversible encephalopathy syndrome (PRES). She had clinical manifestations of headaches, increasing somnolence and tonic-clonic seizures. The fluid-attentuated inversion recovery (FLAIR) MR imaging sequence conspicuously showed bihemispheric, symmetrical cortical and subcortical white matter hyperintensities that preponderantly involved the parietal and occipital lobes. Diffusion-weighted imaging (DWI) sequence reflected the preponderant existence of vasogenic edema in the involved areas. MR spectroscopy showed no significant N-acetyl aspartate (NAA) depletion or lactate elevation prospectively, indicating the absence of significant neuronal loss and reversibility of the brain parenchymal changes. The clinical and radiologic manifestations essentially resolved completely with discontinuation of the drug.  相似文献   

5.
Background and purposeGiven increasing interest in laser interstitial thermotherapy (LITT) to treat brain tumor patients, we explored if examining multiple MRI contrasts per brain tumor patient undergoing surgery can impact predictive accuracy of survival post-LITT.Materials and methodsMRI contrasts included fluid-attenuated inversion recovery (FLAIR), T1 pre-gadolinium (T1pre), T1 post-gadolinium (T1Gd), T2, diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), susceptibility weighted images (SWI), and magnetization-prepared rapid gradient-echo (MPRAGE). The latter was used for MRI data registration across preoperative to postoperative scans. Two ROIs were identified by thresholding preoperative FLAIR (large ROI) and T1Gd (small ROI) images. For each MRI contrast, a numerical score was assigned based on changing image intensity of both ROIs (vs. a normal ROI) from preoperative to postoperative stages. The fully-quantitative method was based on changing image intensity across scans at different stages without any human intervention, whereas the semi-quantitative method was based on subjective criteria of cumulative trends across scans at different stages. A fully-quantitative/semi-quantitative score per patient was obtained by averaging scores for each MRI contrast. A standard neuroradiological reading score per patient was obtained from radiological interpretation of MRI data. Scores from all 3 methods per patient were compared against patient survival, and re-examined for comorbidity and pathology effects.ResultsPatient survival correlated best with semi-quantitative scores obtained from T1Gd, ADC, and T2 data, and these correlations improved when biopsy and comorbidity were included.ConclusionThese results suggest interfacing neuroradiological readings with semi-quantitative image analysis can improve predictive accuracy of patient survival.  相似文献   

6.
Early ischemic change after stroke can be demonstrated with diffusion-weighted imaging (DWI) and quantified by measuring the apparent diffusion coefficient (ADC) and/or lesion volume. We examined the reliability and reproducibility of lesion volume and ADC measurement on DWI images, and discuss the implications for clinical studies. Using 38 DWI scans from 15 stroke patients, two observers (a physicist and a neuroscience graduate) blind to each other, recorded the lesion volume on DWI sequences, measured the ADC values in this volume and calculated the ratio of ischemic: control ADC (ADCr). One observer repeated his measurements blind to his first, and also examined the effect on lesion volume and ADC of deliberately varying by only one pixel, the outline of the visible boundary of the lesion. The inter and intra-rater reliability were worse for lesion volume than ADC or ADCr measurements: lesion volume, inter-rater coefficient of variation (CoV) 85 +/- 130%, intra-rater CoV 20+/-SD80% (p < 0.05); ADC inter-rater CoV 7.7 +/- SD 19%, intra-rater CoV 0.2 +/- SD 12% (p = NS); and ADCr inter-rater CoV 8 +/- SD27%, intra-rater CoV 0.8 +/- SD73% (p = NS). Altering the position of the outline tracing of the lesion boundary by one pixel altered the measured volumes by 22 +/- SD25% (p < 0.05), but ADC values were altered by only 2.9 +/- SD4.9% and ADCr by 2.7 +/- SD4.8% (p = NS). ADC and ADCr values are more reliable and reproducible than DWI lesion size in acute ischemic stroke because altering where the lesion boundary is measured has a much greater impact on lesion volume than on the ADC or ADCr. This effect is greatest in large lesions.  相似文献   

7.
BACKGROUND AND PURPOSE: The purpose of this study was to assess the use of diffusion tensor imaging (DTI) in the evaluation of new contrast-enhancing lesions and perilesional edema in patients previously treated for brain neoplasm in the differentiation of recurrent neoplasm from treatment-related injury. METHODS: Twenty-eight patients with new contrast-enhancing lesions and perilesional edema at the site of previously treated brain neoplasms were retrospectively reviewed. Nine directional echoplanar DTIs with b=1000 s/mm(2) were obtained using a single-shot spin-echo echoplanar imaging. Standardized regions of interest were manually drawn in several regions. Mean apparent diffusion coefficient (ADC), fractional anisotropy (FA) and eigenvalue indices (lambda( parallel) and lambda( perpendicular)) and their ratios relative to the contralateral side were compared in patients with recurrent neoplasm versus patients with radiation injury, as established by histological examination or by clinical course, including long-term imaging studies and magnetic resonance spectroscopy. RESULTS: The ADC values in the contrast-enhancing lesions were significantly higher (P=.01) for the recurrence group (range=1.01 x 10(-3) to 1.66 x 10(-3) mm(2)/s; mean+/-S.D.=1.27+/-0.15) than for the nonrecurrence group (range=0.9 x 10(-3) to 1.31 x 10(-3) mm(2)/s; mean+/-S.D.=1.12+/-0.14). The ADC ratios in the white matter tracts in perilesional edema trended higher (P=.09) in treatment-related injury than in recurrent neoplasm (mean+/-S.D.=1.85+/-0.30 vs. 1.60+/-0.27, respectively). FA ratios were significantly higher in normal-appearing white matter (NAWM) tracts adjacent to the edema in the nonrecurrence group (mean+/-S.D.=0.89+/-0.15) than in those in the recurrence group (mean+/-S.D.=0.74+/-0.14; P=.03). Both eigenvalue indices lambda( parallel) and lambda( perpendicular) were significantly higher in contrast-enhancing lesions in the recurrence group than in those in the nonrecurrence group (P=.02). As well, both eigenvalue indices lambda( parallel) and lambda( perpendicular) were significantly higher in perilesional edema than in normal white matter (P<.01 and P<.001, respectively) in both groups. CONCLUSION: The assessment of diffusion properties, especially ADC values and ADC ratios, in contrast-enhancing lesions, perilesional edema and NAWM adjacent to the edema in the follow-up of new contrast-enhancing lesions at the site of previously treated brain neoplasms may add to the information obtained by other imaging techniques in the differentiation of radiation injury from tumor recurrence.  相似文献   

8.
Proton magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI) were carried out in men with increased prostate-specific antigen (PSA) level. Forty subjects [controls (Group I) and patients (Groups II and III with PSA >20 and 4-20 ng/ml, respectively)] were investigated using endorectal coil at 1.5 T prior to transrectal ultrasound (TRUS)-guided biopsy. Metabolite ratio [citrate/(choline+creatine)] and apparent diffusion coefficient (ADC) were calculated for identical voxels. In patients, voxels that showed lower metabolite ratio showed reduced ADC in the peripheral zone (PZ) of the prostate, and voxels with increased metabolite ratio showed higher ADC. Metabolite ratios were used to predict areas of malignancy if the ratio was <1.4 and if ADC value was <1.17 x 10(-3) mm(2)/s. Patients in Group II had lower metabolite ratio and ADC in the PZ compared to controls and Group III. All 13 were positive for malignancy in MR, while 12 of 13 were positive on TRUS-guided sextant biopsy. In Group III, certain voxels of PZ that showed reduced metabolite ratio also showed lower ADC. A positive correlation was observed between metabolite ratio and ADC. MR predicted areas of malignancy in PZ in 15 of 20 patients; however, only six were positive on TRUS-guided biopsy perhaps due to high false-negative rate of TRUS-guided biopsy. Results show positive correlation between MRSI and DWI and their potential in detection of malignancy, thereby improving the diagnosis especially in patients with PSA level of 4-20 ng/ml.  相似文献   

9.
Traditionally, tumor response has been assessed via tumor size measurements during the course of a treatment. However, changes in these morphologically based measures occur relatively late in the course of a treatment. Alternative biomarkers are currently being evaluated to enable an earlier assessment of treatment to facilitate early cessation and cost savings. Diffusion-weighted imaging (DWI) has been identified by preclinical studies to be a likely alternative to tumor size measurements. In this study, 10 patients were examined prior to and after the first and second chemotherapy cycle time points. Longest diameter tumor measurements and apparent diffusion coefficients (ADCs) were recorded at each exam. An increase in the mean (normalized) ADC was noted as early as the first cycle time point. However, a reduction in the mean (normalized) longest diameter was only noted at the second cycle time point. Significant alterations from the baseline value were noted for ADC at the first (P=.005) and second cycle time points (P=.004). Longest diameter measurements only achieved a borderline significance at the second time point (P=.057). These results indicate that DWI may provide a suitable biomarker capable of providing an indication of response to treatment prior to tumor size measurements.  相似文献   

10.
PURPOSE: Obesity is characterized by an altered distribution of body fluid. However, distribution of fluid (extracellular/intracellular) in brain tissues has not been studied in obese subjects yet. The purpose of this study was to detect possible brain diffusion changes especially in satiety and hunger related centers in obese subjects by diffusion weighted imaging (DWI). METHODS: Conventional MRI and DWI of the brain was obtained from 81 obese patients (obese=68, morbid obese=13) and 29 age-matched, nonobese. The apparent diffusion coefficient (ADC) values were calculated in hypothalamus; amygdala; hippocampal gyrus; thalamus; insula; cingulate gyrus; orbitofrontal, dorsomedial and dorsolateral frontal, middle temporal and occipital cortex; cerebellum; midbrain and corpus striatum. RESULTS: The ADC values of hypothalamus, hippocampal gyrus, amygdala, insula, cerebellum and midbrain were significantly increased in patients (n:81) when compared to nonobese subjects. The ADC values of thalamus, hippocampal gyrus, amygdala, orbitofrontal, occipital, dorsolateral and middle temporal cortex, insula and midbrain were significantly increased in morbid obese when compared to nonobese subjects. The ADC values of orbitofrontal and occipital cortex were significantly higher in morbid obese than the values in the obese. The body mass index positively correlated with ADC values of amygdala, insula, orbitofrontal and middle temporal cortex. CONCLUSION: We observed increased ADC values of distinct locations related to satiety and hunger that suggest altered fluid distribution and/or vasogenic edema in obese subjects. Awareness of this abnormalities in brain tissue composition/function in obesity may contribute to better understanding of the underlying mechanisms.  相似文献   

11.
Magnetic resonance spectroscopy (MRS) and perfusion of central pontine myelinolysis (CPM) have been rarely reported. One case of CPM that developed after liver transplantation was analyzed with serial diffusion-weighted imaging (DWI), MRS and MR perfusion. During the acute phase, a pontine lesion showed an obvious high-signal intensity on DWI with decreased apparent diffusion coefficient value, decreased N-acetylaspartate (NAA)/creatine (Cr) ratio, increased choline (Cho)/Cr ratio and increased perfusion on the cerebral blood volume map. In a later phase, the lesion showed isosignal intensity on DWI, further decreased NAA/Cr ratio, increased Cho/Cr ratio and decreased perfusion. The increase in lesion perfusion during the acute phase may reflect a higher metabolic activity due to an increase in cell number and activity.  相似文献   

12.
IntroductionOscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors.Material and methodsEleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms − ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms − ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined.ResultsHigh-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors.ConclusionThe dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.  相似文献   

13.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   

14.
To determine if metabolite ratios as measured by 3-dimensional echo planar spectroscopy imaging (3D-EPSI) from central brain regions of interest (ROI) centered at the corpus callosum reflect imaging metrics of large volumes of supratentorial brain (STB) from patients with multiple sclerosis. METHODS: 48 MS patients with relapsing-remitting, secondary progressive, and primary progressive disease underwent a 3D-EPSI sequence covering large volumes of STB. Metabolite ratios were first estimated from all voxels within a STB mask using a linear regression of N-acetylaspartate (NAA) over Creatine (Cr), NAA over choline (Cho) and Cho over Cr. Secondly, spectroscopic voxels from a central brain (CB) ROI centered at the corpus callosum were selected within the STB. Ratios were compared using Bland-Altman regression analysis and Spearman's correlation coefficients between STB versus central brain. Ratios from studied ROIs were correlated with the EDSS and compared to normal controls. RESULTS: Very strong correlations ranging from 0.884 and 0.938 (p < 0.0001) were found for all metabolite ratios between STB versus central brain. NAA/Cr ratios were similarly and negatively correlated with the EDSS across all ROIs, trends ranging from -0.257 to -0.314 (p < 0.1). NAA/Cr from all MS patients was similarly decreased compared to controls across all ROIs (p < 0.01). CONCLUSION: Metabolite ratios from a central brain ROI were statistically equivalent and highly correlated with ratios from the STB. The study of NAA/Cr using (1)HMRS from a central brain ROI centered at the corpus callosum seems to be representative of brainwide axonal changes in patients with MS.  相似文献   

15.
Echo-planar-based diffusion-weighted imaging (DWI) of the prostate is increasingly being suggested as a viable technique, complementing information derived from conventional magnetic resonance imaging methods for use in tissue discrimination. DWI has also been suggested as a potentially useful tool in the assessment of tumor response to treatment. In this study, the repeatability of apparent diffusion coefficient (ADC) values obtained from both DWI and diffusion tensor imaging (DTI) has been assessed as a precursor to determining the magnitude of treatment-induced changes required for reliable detection. The repeatability values of DWI and DTI were found to be similar, with ADC values repeatable to within 35% or less over a short time period of a few minutes and a longer time period of a month. Fractional anisotropy measurements were found to be less repeatable (between 26% and 71%), and any changes duly recorded in longitudinal studies must therefore be treated with a degree of caution.  相似文献   

16.
Contrast-enhanced fluid-attentuated inversion recovery (FLAIR) magnetic resonance (MR) imaging has shown to be a valuable diagnostic modality in the assessment of cerebral gliomas. In this study we report of a potential pitfall regarding the delineation of enhancing tumor parts on contrast enhanced FLAIR imaging. In a limited number of patients, the administration of gadolinium obscures the area of contrast enhancement on contrast enhanced FLAIR images. Therefore the delineation of the macroscopic tumor parts, which are of great importance for the treatment planning is substantially worsened.  相似文献   

17.
The purpose of this project was to assess the reliability of the cerebral mean transit time (MTT) obtained using perfusion-weighted MR imaging by comparing it with the MTT obtained when performing positron emission tomography (PET). Ten patients with chronic occlusive cerebrovascular disease were investigated. They had either unilateral internal carotid artery occlusion or middle cerebral artery occlusion. The regions-of-interest were placed in non-infarcted areas within the territory of the middle cerebral artery on the affected side. Control regions-of-interest were placed in mirrored regions of the contralateral side. Linear regression analyses were performed using the parameters of the MTT obtained with perfusion-weighted MR imaging and the MTT, cerebral blood flow, vascular reactivity, and oxygen extraction fraction obtained with PET. The respective MTTs of the affected and non-affected sides obtained with perfusion-weighted MR imaging versus those with PET were 7.3 +/- 2.2 s and 6.0 +/- 1.2 s versus 8.2 +/- 3.0 s and 6.4 +/- 1.7 s. The MTT obtained using perfusion-weighted MR imaging and PET demonstrated statistically significant correlation (r = 0.87, p < 0.0001). The MTT obtained with perfusion-weighted MR imaging correlated statistically with cerebral blood flow (r = -0.74, p < 0.001), vascular reactivity (r = -0.73, p < 0.001) and oxygen extraction fraction (r = 0.61, p < 0.01). Similarly, the MTT obtained using PET statistically correlated with cerebral blood flow (r = -0.78, p < 0.0001), vascular reactivity (r = -0.51, p < 0.05) and oxygen extraction fraction (r = 0.68, p < 0.01). The reliability of the MTT obtained using perfusion-weighted MR imaging appears to be approximately equal to that obtained with positron emission tomography.  相似文献   

18.

Purpose

To present diffusion and perfusion magnetic resonance imaging (MRI) characteristics of focal nodular hyperplasia (FNH) of the liver.

Materials and Methods

Thirty-five patients with 52 FNHs (21 were pathologically-confirmed) underwent MRI at 1.5-T device. MR diffusion [diffusion-weighted imaging (DWI)] was performed using a free-breathing single-shot, spin-echo, echo-planar sequence with b gradient factor value of 500 s/mm². MR perfusion [perfusion-weighted imaging (PWI)] consisted of a 3D free-breathing LAVA sequence repeated up to 5 minutes after injection of 7 mL Gd-BOPTA (MultiHance, Bracco, Italy) and 20 mL saline flush at a flow rate of 4 mL/s. Apparent diffusion coefficient (ADC) and time-signal intensity curve (TSIC) were obtained for both normal liver and each FNH by two reviewers in conference; maximum enhancement (ME) percentage, time to peak enhancement (TTP), and maximal slope (MS) were also calculated.

Results

On DWI mean ADC value was 1.624×10− 3 mm2/s for normal liver and 1.629×10− 3 mm2/s for FNH. ADC value for each FNH and the normal liver was not statistically different (P= .936). On PWI, TSIC-Type 1 (quick and marked enhancement and quick decay followed by slowly decaying) was observed in all 52 FNHs, and TSIC-Type 2 (fast enhancement followed by slowly decaying plateau) in all normal livers. The mean ME, TTP and MS values were significantly different for FNH and normal liver (P= .005).

Conclusion

FNHs of the liver showed typical diffusion and perfusion MRI characteristics in all cases. On the ADC map, we could get similar value between the FNHs and the background parenchyma. On the perfusion imaging, FNHs showed a different pattern distinguished from the background liver.  相似文献   

19.
Present knowledge suggests that in glioblastoma multiforme the value of the apparent diffusion coefficient (ADC) is elevated in the solid part and hyperintense in T1, in spite of the elevated cellularity, and also in areas where peritumoral vasogenic edema is present. The purpose of our study has been to verify in vivo if the ADC increases in areas of solid tumor because of an increased presence of edema, like it happens in areas surrounding the tumor. Sixteen patients with histologically verified glioblastoma multiforme underwent a magnetic resonance (MR) examination with sequences: T1-weighted pre and post contrast, diffusion-weighted at b = 0 and b = 1000 s/mm(2), perfusion-weighted. One hundred sixty-five regions of interest (ROI) have been obtained for all set of patients. In each ROI we have estimated 4 parameters: ADC, intensity of T2-signal normalised to the white matter (SI(T2W)(n)), regional cerebral blood volume (rCBV), T1-signal enhancement (E%). With the SI(T2W)(n) the presence of edema was estimated. For each pair of measured parameters a statistical test of linear regression on the set of all ROI was made. A directed linear correlation between: ADC and SI(T2W)(n) (p 相似文献   

20.
External radiation therapy of brain tumors may cause adverse effects on normal brain tissue, resulting in severe neuropsychological and cognitive impairment. We investigated the late delayed radiation effects in the white matter (WM) using (1)H magnetic resonance spectroscopic imaging ((1)HMRSI). Nine glioma patients with local radiation-induced signal abnormalities in the T(2)-weighted MR images were studied with nine age- and sex-matched controls. The metabolite ratios in the radiation-induced hyper intensity area (RIHA) and in the normal appearing white matter (NAWM) of the patients were compared with respective WM areas of the controls. In RIHA, choline/creatine (Cho/Cr) was 17% decreased (1.22 +/- 0.13 vs 1.47 +/- 0.16, p = 0.0027, significant (s), unpaired Student's t test with Bonferroni correction) in the patients compared to the controls, while there was no difference in N-acetyl aspartate/Cr (NAA/Cr) (2.49 +/- 0.57 vs 2.98 +/- 0.32, p = 0.039) or NAA/Cho (2. 03 +/- 0.40 vs 2.04 +/- 0.17, p = 0.95). In NAWM, Cho/Cr was 24% decreased (1.21 +/- 0.15 vs 1.59 +/- 0.13, p < 0.0001, s) and NAA/Cho was 20% increased (2.49 +/- 0.49 vs 1.98 +/- 0.15, p = 0. 0082, s) in the patients compared to the controls, while there was no difference in NAA/Cr (2.99 +/- 0.46 vs 3.16 +/- 0.32, p = 0.38). NAA(RIHA)/NAA(NAWM) was 25% decreased (0.75 +/- 0.20 vs 1.00 +/- 0. 12, p = 0.0043, s) and Cr(RIHA)/Cr(NAWM) was 16% decreased (0.89 +/- 0.15 vs 1.06 +/- 0.10, p = 0.013, s) in the patients compared to the controls, while there was no difference in Cho(RIHA)/Cho(NAWM) (0.92 +/- 0.23 vs 0.98 +/- 0.10, p = 0.47). (1)HMRSI reveals widespread chemical changes in the WM after radiation therapy. In RIHA, there is loss of NAA, Cho, and Cr implying axonal and membrane damage and in NAWM, there is loss of Cho, reflecting membrane damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号