首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects.

Results

Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus.

Conclusions

Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.  相似文献   

2.
The E200K mutation on chromosome 20 can cause familial Creutzfeldt-Jakob disease (CJD). Patients with this mutation are clinically similar to those with sporadic CJD, but their imaging features are not well documented. We report here the quantitative and qualitative evaluation of the magnetic resonance (MR) imaging characteristics of this unique group of patients using three-dimensional spoiled gradient recalled (SPGR) echo images, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurements, MR spectroscopy and a fluid-attenuated inversion recovery (FLAIR) sequence. The SPGR and ADC data were analyzed with SPM99. ANCOVA and regression models were used for a region-of-interest (ROI) analysis of ADC and metabolic ratios. CJD patients had a decreased fraction of gray matter and an increased fraction of cerebrospinal fluid (P=.001) in the cortex and cerebellum and increased ADC values in the cortex (P<.001). Focal decreases of ADC were found in the putamen via ROI analysis (548+/-83 vs. 709+/-9 microm(2)/s, P=.02). N-acetyl aspartate (NAA) was generally reduced, with the NAA/Cho ratio lowest in the cingulate gyrus. Qualitative assessment revealed hyperintensities on FLAIR, DWI or both in the putamen (three out of four patients), caudate (three out of four patients) and thalamus. These results provide a framework for future study of patients with genetically defined familial CJD.  相似文献   

3.
BackgroundRegional homogeneity (ReHo), a measurement from resting-state functional magnetic imaging (rs-fMRI) to reflect local synchronization of brain activities, has been widely explored in previous studies of neurological diseases. SIV infected model for detecting the neurological changes with progression was studied.MethodsIn the study, six rhesus macaques infected by simian immunodeficiency virus (SIV) were scanned by resting-state fMRI at the following time points: before SIV inoculation (baseline), 12 weeks and 24 weeks post inoculation (12 wpi, 24 wpi). Meanwhile, the immunological parameters including serum percentage of CD4 + T cell, CD4/CD8 ratio and absolute CD4 + T cell number were measured and analyzed.ResultsIn comparison of baseline, significant decreased ReHo was found in the left superior frontal gyrus, left superior temporal gyrus, left hippocampus, right precuneus, left angular gyrus, and bilateral occipital gyrus; in contrast increased ReHo in putamen at 12 wpi. Moreover, at the time of 24 wpi, decreased ReHo was observed in the right postcentral gyrus, left precentral gyrus, posterior cingulated gyrus and thalamus, while ReHo was increased in the left putamen, hippocampus, left anterior cingulated cortex and precentral cortex. The correlation analysis revealed that ReHo in the superior frontal gyrus showed negative association with CD4/CD8 ratio and positive with absolute CD4 + T cell number. The correlation analysis showed that percentage of CD4 + was correlated with the ReHo values in right middle frontal gyrus, bilateral thalamus and amygdala positively; negative relationship with left putamen, left superior frontal gyrus, left superior and middle temporal gyrus.ConclusionThe study first indicates that hippocampus, putamen, frontal and occipital lobe were impaired by using rs-fMRI and correlated with immunological parameters. Thus, ReHo value can be utilized as a noninvasive biomarker of spontaneous brain activity changes caused by the progression of neurological impairments.  相似文献   

4.
PURPOSE: To demonstrate drop in brain ADC measurements from low to high b values; to evaluate the structural information provided based on those changes; and to discuss the anatomical reasons for ADC differences. METHODS: Four cerebral ROI (precuneus-PRC, hippocampus-HIP, and the genu-GCC and splenium-SCC of the corpus callosum-CC) were drawn for ADC measurements with low (1000) and high (3000) b-value DWI in 50 normal subjects. ANOVA and Bonferroni correction tested ADC differences between areas, between both hemispheres, between GCC and SCC, and between b-value related ADC drop within areas. Pearson test evaluated dependence of interhemispheric and intercallosum ADC measurements obtained with the same b-value, dependence between areas of intrazonal drop, and the interhemispheric and intercallosum dependence of intrazonal drop. RESULTS: ADCs differed between areas (P<.0001). Interhemispheric ADC only differed in PRC with low b-value (P<.027). No HIP asymmetries occurred regardless the b-value. ADC drop within PRC and HIP was similar but differed (P<.0001) from ADC drop within both CC ROI. ADC drop was also different between GCC and SCC (P<.0001). In PRC and HIP, ADC showed a significant interhemispheric and intrazonal dependence (P<.0001). There was no GCC to SCC ADC dependence. Intrazonal dependence in the CC was only significant in the SCC (P<.001). Interhemispheric dependence of intrazonal drop was significant (PRC P=.007; HIP P<.0001) but failed to reach significance in the CC. CONCLUSION: Low and high b-value measurements show different diffusion behaviours within different tissues, especially in a highly anisotropic structure as the corpus callosum. This fact can provide valuable information about brain structure and different diffusion compartments in clinical DWI.  相似文献   

5.
丁尚文  钱志余  李韪韬  陶玲  胡光霞 《光学学报》2012,32(5):517001-185
研究光诱发和静息两种状态下的脑功能网络的信息传输枢纽、网络聚合能力和信息传输的最小路径的差异性。采用小世界网络理论对脑功能网络进行建模,通过对脑功能网络连接度、簇系数和最小路径进行分析,得出光诱发状态下的信息传输重要枢纽为岛叶、后扣带回功能区;丘脑、海马两处功能网络有较大聚合能力。光诱发过程从额上回经颞中回传输到枕中回。静息状态下的信息传输重要枢纽为楔叶、舌回;中央旁小叶、颞上回脑功能网络有较大聚合能力。静息状态下的左半区最佳信息传输路径为左额上回、左颞中回、右楔叶最后到左枕中回;右脑半区的为右额上回、右前扣带回、左枕下回最后到右枕中回。光诱发状态与静息状态的最佳传输路径有明显的区别。  相似文献   

6.
IntroductionOscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors.Material and methodsEleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms − ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms − ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined.ResultsHigh-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors.ConclusionThe dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.  相似文献   

7.
OBJECTIVE: Hydrocephalus is an important etiological factor in neurological decline. With the advent of fetal ultrasound, fetal hydrocephalus is now more frequently detected than in the past. Ultrasonography (USG) provides information on general morphology, but microstructural changes that may play a prognostic role are beyond the resolution of that technique. These changes may theoretically be revealed by diffusion-weighted magnetic resonance imaging (DW-MRI). In this study, our preliminary findings of DW-MRI on the hydrocephalic fetuses are presented. MATERIALS AND METHODS: Twelve fetuses with fetal USG diagnosis of hydrocephalus were investigated using a 1.5-T MR scanner. In addition to conventional techniques, DWI was performed. It was obtained using a single-shot echo-planar imaging sequence (TR/TE: 4393/81 ms; slice thickness: 5 mm; interslice gap: 1 mm; FOV: 230 mm; matrix size: 128x256; b values: 0 and 1000 s/mm2). Apparent diffusion coefficient (ADC) values were measured in the white matter of the periventricular frontal and occipital lobes, basal ganglia, thalamus, centrum semiovale and cerebrospinal fluid in the lateral ventricle. These values were compared with the normal prenatal ADC values from a radiological study published in the literature. RESULTS: All fetuses had moderate or severe bilateral supratentorial ventricular dilatation that was compatible with hydrocephalus. On conventional T1- and T2-weighted imaging, cerebral parenchyma had normal signal pattern and ADC values were significantly lower than those reported for fetuses with normal brain. These values were lower in hydrocephalic fetuses with statistical significance (P<.05-.01). CONCLUSION: DWI is a sensitive technique to investigate cerebral microstructure. The reduction in cerebral blood flow and alterations in cerebral energy metabolism in cases with hydrocephalus have been shown before. Changes in cerebral blood flow and energy metabolism, as a consequence of cerebral compression, may occur in hydrocephalus. Elevated ventricular pressure may cause cerebral ischemia. The anaerobic glycolysis seen in the hydrocephalic brain tissue by increasing the lactate concentration and intracellular fluid flux may be the reason for the reduced ADC values in hydrocephalic fetuses. However, long-term prospective trials on the correlation of ADC values and neurological outcome are necessary to exploit the full benefit of that novel technique.  相似文献   

8.
Echo-planar-based diffusion-weighted imaging (DWI) of the prostate is increasingly being suggested as a viable technique, complementing information derived from conventional magnetic resonance imaging methods for use in tissue discrimination. DWI has also been suggested as a potentially useful tool in the assessment of tumor response to treatment. In this study, the repeatability of apparent diffusion coefficient (ADC) values obtained from both DWI and diffusion tensor imaging (DTI) has been assessed as a precursor to determining the magnitude of treatment-induced changes required for reliable detection. The repeatability values of DWI and DTI were found to be similar, with ADC values repeatable to within 35% or less over a short time period of a few minutes and a longer time period of a month. Fractional anisotropy measurements were found to be less repeatable (between 26% and 71%), and any changes duly recorded in longitudinal studies must therefore be treated with a degree of caution.  相似文献   

9.
Early ischemic change after stroke can be demonstrated with diffusion-weighted imaging (DWI) and quantified by measuring the apparent diffusion coefficient (ADC) and/or lesion volume. We examined the reliability and reproducibility of lesion volume and ADC measurement on DWI images, and discuss the implications for clinical studies. Using 38 DWI scans from 15 stroke patients, two observers (a physicist and a neuroscience graduate) blind to each other, recorded the lesion volume on DWI sequences, measured the ADC values in this volume and calculated the ratio of ischemic: control ADC (ADCr). One observer repeated his measurements blind to his first, and also examined the effect on lesion volume and ADC of deliberately varying by only one pixel, the outline of the visible boundary of the lesion. The inter and intra-rater reliability were worse for lesion volume than ADC or ADCr measurements: lesion volume, inter-rater coefficient of variation (CoV) 85 +/- 130%, intra-rater CoV 20+/-SD80% (p < 0.05); ADC inter-rater CoV 7.7 +/- SD 19%, intra-rater CoV 0.2 +/- SD 12% (p = NS); and ADCr inter-rater CoV 8 +/- SD27%, intra-rater CoV 0.8 +/- SD73% (p = NS). Altering the position of the outline tracing of the lesion boundary by one pixel altered the measured volumes by 22 +/- SD25% (p < 0.05), but ADC values were altered by only 2.9 +/- SD4.9% and ADCr by 2.7 +/- SD4.8% (p = NS). ADC and ADCr values are more reliable and reproducible than DWI lesion size in acute ischemic stroke because altering where the lesion boundary is measured has a much greater impact on lesion volume than on the ADC or ADCr. This effect is greatest in large lesions.  相似文献   

10.
Functional magnetic resonance imaging (fMRI) exploits the blood oxygenation level dependent (BOLD) effect to detect neuronal activation related to various experimental paradigms. Some of these, such as reversal learning, involve the orbitofrontal cortex and its interaction with other brain regions like the amygdala, striatum or dorsolateral prefrontal cortex. These paradigms are commonly investigated with event-related methods and gradient echo-planar imaging (EPI) with short echo time of 27 ms. However, susceptibility-induced signal losses and image distortions in the orbitofrontal cortex are still a problem for this optimized sequence as this brain region consists of several slices with different optimal echo times. An EPI sequence with slice-dependent echo times is suitable to maximize BOLD sensitivity in all slices and might thus improve signal detection in the orbitofrontal cortex. To test this hypothesis, we first optimized echo times via BOLD sensitivity simulation. Second, we measured 12 healthy volunteers using a standard EPI sequence with an echo time of 27 ms and a modified EPI sequence with echo times ranging from 22 ms to 47 ms. In the orbitofrontal cortex, the number of activated voxels increased from 87±44 to 549±83 and the maximal t-value increased from 4.4±0.3 to 5.4±0.3 when the modified EPI was used. We conclude that an EPI with slice-dependent echo times may be a valuable tool to mitigate susceptibility artifacts in event-related whole-brain fMRI studies with a focus on the orbitofrontal cortex.  相似文献   

11.
Amnestic mild cognitive impairment (aMCI) is a syndrome associated with faster memory decline than normal aging and frequently represents the prodromal phase of Alzheimer's disease. When a person is not actively engaged in a goal-directed task, spontaneous functional magnetic resonance imaging (fMRI) signals can reveal functionally connected brain networks, including the so-called default mode network (DMN). To date, only a few studies have investigated DMN functions in aMCI populations. In this study, group-independent component analysis was conducted for resting-state fMRI data, with slices acquired perpendicular to the long axis of the hippocampus, from eight subjects with aMCI and eight normal control subjects. Subjects with aMCI showed an increased DMN activity in middle cingulate cortex, medial prefrontal cortex and left inferior parietal cortex compared to the normal control group. Decreased DMN activity for the aMCI group compared to the normal control group was noted in lateral prefrontal cortex, left medial temporal lobe (MTL), left medial temporal gyrus, posterior cingulate cortex/retrosplenial cortex/precuneus and right angular gyrus. Although MTL volume difference between the two groups was not statistically significant, a decreased activity in left MTL was observed for the aMCI group. Positive correlations between the DMN activity and memory scores were noted for left lateral prefrontal cortex, left medial temporal gyrus and right angular gyrus. These findings support the premise that alterations of the DMN occur in aMCI and may indicate deficiencies in functional, intrinsic brain architecture that correlate with memory function, even before significant MTL atrophy is detectable by structural MRI.  相似文献   

12.
Previous neuroimaging studies have primarily focused on the neural activities involving the acute effects of acupuncture. Considering that acupuncture can induce long-lasting effects, several researchers have begun to pay attention to the sustained effects of acupuncture on the resting brain. Most of these researchers adopted functional connectivity analysis based on one or a few preselected brain regions and demonstrated various function-guided brain networks underlying the specific effect of acupuncture. Few have investigated how these brain networks interacted at the whole-brain level. In this study, we sought to investigate the functional correlations throughout the entire brain following acupuncture at acupoint ST36 (ACUP) in comparison with acupuncture at nearby nonacupoint (SHAM). We divided the whole brain into 90 regions and constructed functional brain network for each condition. Then we examined the network hubs and identified statistically significant differences in functional correlations between the two conditions. Following ACUP, but not SHAM, the limbic/paralimbic regions such as the amygdala, hippocampus and anterior cingulate gyrus emerged as network hubs. For direct comparisons, increased correlations for ACUP compared to SHAM were primarily related with the limbic/paralimbic and subcortical regions such as the insula, amygdala, anterior cingulate gyrus, and thalamus, whereas decreased correlations were mainly related with the sensory and frontal cortex. The heterogeneous modulation patterns between the two conditions may relate to the functional specific modulatory effects of acupuncture. The preliminary findings may help us to better understand the long-lasting effects of acupuncture on the entire resting brain, as well as the neurophysiological mechanisms underlying acupuncture.  相似文献   

13.

Background  

Sensitivity of the gustatory system could be modulated by a number of short-term and long-term factors such as body mass, gender, age, local and systemic diseases and pathological processes, excessive alcohol drinking, drug dependence, smoking, composition of oral fluid, state of oral hygiene, consumption of some foods among many others. A few studies have demonstrated the effects of hunger and caloric satiety on sensitivity of the gustatory system in obese humans and animals. The aim of the present study was to assess the effects of short-term caloric deprivation and satiety on recognition taste thresholds of healthy, non-smoking, non-drinking, non-obese young male subjects. The two-alternative forced-choice technique was used to measure taste threshold.  相似文献   

14.
Recent studies have demonstrated regional segregations on several peripheral white matter (WM) regions, which may imply different anatomical or functional characteristics [Cereb Cortex 17(4) 2007 816–25; Neuroimage 37(2) 2007 599–610; J Cogn Neurosci 16(7) 2004 1227–33]. Nonetheless, little is known about overall patterns of peripheral WM across the regions. In this study, diffusion tensor imaging with 2-mm isovoxel resolution and cortical surface mapping were combined to determine peripheral WM structure. Fractional anisotropy (FA) mapping showed consistent regional patterns across the young normal subjects while significant high or low FA values were shown in the motor-somatosensory cortex, prefrontal cortex, temporal, and medial occipital cortex. By adopting both region of interest and connectivity analysis, results were then discussed with structural network properties as well as WM maturation process.  相似文献   

15.
To examine the pathological effect of a mesial temporal seizure onset zone (SOZ) on local and inter-regional response to faces in the amygdala and other structures of the temporal lobe. Intracranial EEG data was obtained from the amygdala, hippocampus, fusiform gyrus and parahippocampal gyrus of nine patients with drug-refractory epilepsy during visual stimulation with faces and mosaics. We analyzed event-related potentials (ERP), gamma frequency power, phase-amplitude coupling and phase-slope-index and compared the results between patients with versus without a mesial temporal SOZ. In the amygdala and fusiform gyrus, faces triggered higher ERP amplitudes compared to mosaics in both patient groups and higher gamma power in patients without a mesial temporal SOZ. In the hippocampus, famous faces triggered higher gamma power for both groups combined but did not affect ERPs in either group. The differentiated ERP response to famous faces in the parahippocampal gyrus was more pronounced in patients without a mesial temporal SOZ. Phase-amplitude coupling and phase-slope-index results yielded bidirectional modulation between amygdala and fusiform gyrus, and predominately unidirectional modulation between parahippocampal gyrus and hippocampus. A mesial temporal SOZ was associated with an impaired response to faces in the amygdala, fusiform gyrus and parahippocampal gyrus in our patients. Compared to this, the response to faces in the hippocampus was impaired in patients with, as well as without, a mesial temporal SOZ. Our results support existing evidence for face processing deficits in patients with a mesial temporal SOZ and suggest the pathological effect of a mesial temporal SOZ on the amygdala to play a pivotal role in this matter in particular.  相似文献   

16.
PurposeMagnetic resonance imaging is used to stage thyroid tumors. Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) can be used to reflect tumor microstructure. Our aim was to compare ADC values of malignant and benign thyroid lesions based on a large sample.MethodsMEDLINE library, EMBASE and SCOPUS databases were screened for the associations between ADC values and thyroid lesions up to August 2021. The primary endpoint of the systematic review were ADC values of benign and malignant thyroid lesions. In total, 29 studies were suitable for the analysis and were included into the present study.ResultsThe included studies comprised a total of 2137 lesions, 1118 (52.3%) benign and 1019 (47.7%) malignant lesions. The pooled mean ADC value of the benign thyroid lesions was 1.88 × 10−3 mm2/s [95% CI 1.77–2.0] and the pooled mean ADC value of malignant thyroid lesions was 1.15 × 10−3 mm2/s [95% CI 1.04–1.25].ConclusionsADC can well discriminate benign and malignant thyroid tumors. Therefore, DWI should be implemented into the presurgical diagnostic work-up in clinical routine.  相似文献   

17.
Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system.  相似文献   

18.
Magnetic Resonance Diffusion-Weighted Imaging (DWI) has been reported to be helpful for the differential diagnosis between abscesses and cystic/necrotic brain tumors. However the number of patients is still limited, and the sensitivity and specificity of the method remain to be confirmed. The primary purpose of this study was to investigate a larger sample of patients, all investigated under the same experimental conditions, in order to obtain statistically significant data. Moreover, there is no consensus about the appropriate values of b required to use to make an accurate diagnosis from DWI. The secondary purpose of this study was to determine the discriminating threshold b values for raw diffusion-weighted images and for normalized diffusion-weighted images. On the basis of 14 abscesses, 10 high-grade gliomas and 2 metastases, we show that the calculation of accurate Apparent Diffusion Coefficient (ADC) values gives a specificity rate of 100%. Without ADC calculation, we show that image normalization is required to make an accurate differential diagnosis, and we highlight the ability of DWI to discriminate between brain abscesses and cystic/necrotic brain tumors using normalized signal intensity at lower b values (503 s/mm(2)) than usual.  相似文献   

19.
ABSTRACT: BACKGROUND: Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex-MTG-IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. CONCLUSIONS: These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.  相似文献   

20.
Localized high-resolution diffusion tensor images (DTI) from the midbrain were obtained using reduced field-of-view (rFOV) methods combined with SENSE parallel imaging and single-shot echo planar (EPI) acquisitions at 7 T. This combination aimed to diminish sensitivities of DTI to motion, susceptibility variations, and EPI artifacts at ultra-high field. Outer-volume suppression (OVS) was applied in DTI acquisitions at 2- and 1-mm2 resolutions, b = 1000 s/mm2, and six diffusion directions, resulting in scans of 7- and 14-min durations. Mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in various fiber tract locations at the two resolutions and compared. Geometric distortion and signal-to-noise ratio (SNR) were additionally measured and compared for reduced-FOV and full-FOV DTI scans. Up to an eight-fold data reduction was achieved using DTI-OVS with SENSE at 1 mm2, and geometric distortion was halved. The localization of fiber tracts was improved, enabling targeted FA and ADC measurements. Significant differences in diffusion properties were observed between resolutions for a number of regions suggesting that FA values are impacted by partial volume effects even at a 2-mm2 resolution. The combined SENSE DTI-OVS approach allows large reductions in DTI data acquisition and provides improved quality for high-resolution diffusion studies of the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号