首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
采用基于密度泛函理论的第一性原理赝势平面波方法研究了Mg_2Si:Fe体系的电子能带结构、态密度和磁性.结果表明:掺入的Fe原子优先占据晶格中的空隙位,也可能代替晶格中的Mg位.从能带结构和态密度可以看出,当Fe原子位于晶格中空隙位时,系统显示出金属性;当Fe占据Mg位置时,对于自旋向上电子态,体系有一带隙存在,系统呈现明显的半导体特性;对于自旋向下电子态,Fe的替位掺杂在该体系内引入新的杂质能级,杂质能级与导带价带分离,且100%自旋极化.两种位置的杂质,上自旋电子和下自旋电子的态密度均明显不对称,诱导出铁磁性,且铁磁性主要由于Fe的3d态电子诱导产生.Fe位于空隙位时,Fe原子的磁矩为1.69μB;Fe占据Mg位时,Fe原子的磁矩为1.38μB,说明原子磁矩与其所占位置和配位情况有关.  相似文献   

2.
用自旋极化的MS-Xα方法研究了稀土-过渡族化合物SmCo5的电子态密度、自旋能级劈裂及原子磁矩.研究结果显示,由于化合物中Sm-Co间的轨道杂化效应,使Sm原子原来的5d0空轨道上占据了少量5d电子.由于Co(3d)-Sm(5d)电子间的直接交换作用,导致了Sm-Co间的磁性交换耦合,这是化合物中形成Sm-Co铁磁性长程序的一个重要原因.在SmCo5化合物中存在6个能级呈现负交换耦合,导致了SmCo5化合物的居里温度(与金属钴相比)明显下降.还研究了化合物中2c和3g晶位Co的自旋磁矩和轨道磁矩,发现Co(2c)晶位的自旋磁矩、轨道磁矩及冻结部分均略大于Co(3g)晶位,所以2c晶位的L-S耦合强度应略大于3g晶位.因此,2c晶位对SmCo5磁晶各向异性的影响也应大于3g晶位.但Co(2c)未被冻结的轨道磁矩却略小于Co(3g),所以两种晶位对磁晶各向异性的贡献大小之差别不应太大.考虑到4f电子的局域性和化合物中轨道杂化效应所导致的Sm(5d0)空轨道上占据了少量5d电子,可以得到Sm原子磁矩为1.29μB,与顺磁盐中Sm3+磁矩实验值(1.32-1.63uB)及金属中Sm原子磁矩实验值(1.74μB)基本符合.  相似文献   

3.
运用第一性原理的全势能线性缀加平面波方法对闪锌矿结构CrSe和CrAs的电子结构进行自旋极化计算.闪锌矿结构CrSe和CrAs处于晶格平衡时都具有半金属性,它们自旋向下的电子能带带隙分别为3.38 eV和1.79 eV,同时,它们的自旋总磁矩分别为4.00和3.00μ_B/formula.自旋总磁矩主要来源于Cr的原子磁矩,Se和As的原子磁矩对总磁矩的贡献很小而且为负值,因而它们具有明显的铁磁性特征.使晶体晶格在±10%的范围内发生各向同性形变,对闪锌矿结构CrSe和CrAs的电子结构进行计算.计算结果表明,当晶格各向同性形变分别为-4%~10%和-2%~10%时,闪锌矿结构CrSe和CrAs仍然保持半金属铁磁性,并且总磁矩都稳定于4.00和3.00μ_B/formula.  相似文献   

4.
运用第一性原理的全势能线性缀加平面波方法对闪锌矿结构CrSe和CrAs的电子结构进行自旋极化计算。闪锌矿结构CrSe和CrAs处于晶格平衡时都具有半金属性,它们自旋向下的电子能带带隙分别为3.38eV 和1. 79eV,同时,它们的自旋总磁矩分别为4.00和3.00μB/formula。自旋总磁矩主要来源于Cr的原子磁矩,Se和As的原子磁矩对总磁矩的贡献很小而且为负值,因而它们具有明显的铁磁性特征. 使晶体晶格在±10%的范围内发生各向同性形变,对闪锌矿结构CrSe和CrAs的电子结构进行计算. 计算结果表明,当晶格各向同性形变分别为-4 % ~ 10 %和-2 % ~10 %时,闪锌矿结构CrSe和CrAs仍然保持半金属铁磁性,并且总磁矩都稳定于4.00和3.00μB/formula.  相似文献   

5.
基于广义梯度近似密度泛函和全势能线性缀加平面波方法,本文对聚铜络合物[Cu(L)μ-1,3-N3]n(ClO4)n(其中L=tridentate Schiff base为三齿席夫基)的态密度和磁矩进行了计算.磁矩计算结果表明:①该聚铜络合物晶体格子的总磁矩为1.00 μB;②中心铜原子(离子)具有最大的原子磁矩,为0.531 μB;③铜原子和它周围最邻近的氮原子的原子磁矩是该聚铜络合物晶体格子总磁矩的主要来源.通过对中心铜原子及其最邻近氮原子的自旋态密度图进行分析,得出了铜原子和它周围最邻近氮原子的磁性主要分别来源于它们的d轨道和p轨道,同时还发现了中心铜离子的d轨道与叠氮末端氮原子的p轨道之间存在杂化现象, 以及中心铜离子向叠氮末端氮原子的自旋退局域化现象.自旋退局域化效应通过叠氮这一旁道使相邻两中心铜离子发生铁磁性相互作用.  相似文献   

6.
采用基于第一性原理的全势能线性缀加平面波方法对闪锌矿结构MnSb和MnBi的电子结构进行自旋极化计算.闪锌矿结构MnSb和MnBi处于晶格平衡时都是半金属性的,并且它们自旋向下电子能带带隙分别是1.32 eV和1.27 eV.闪锌矿结构MnSb和MnBi的自旋总磁矩都为4.00μB/formula,总磁矩主要来源于Mn的原子磁矩,Sb和Bi的原子磁矩对总磁矩的贡献很小而且为负值,它们具有明显的铁磁性特征.使晶体晶格在±10%的范围内发生各向同性形变,对闪锌矿结构MnSb和MnBi的电子结构进行计算.计算结果表明,当晶格各向同性形变分别为-1%~10%和-4%~10%时,闪锌矿结构MnSb和MnBi仍然保持半金属铁磁性,并且总磁矩都稳定于4.00μs/formula.  相似文献   

7.
采用基于第一性原理的全势能线性缀加平面波方法对闪锌矿结构MnSb和MnBi的电子结构进行自旋极化计算。闪锌矿结构MnSb和MnBi处于晶格平衡时都是半金属性的,并且它们自旋向下电子能带带隙分别是1.32eV 和1.27eV。闪锌矿结构MnSb和MnBi的自旋总磁矩都为4.00μB/formula,总磁矩主要来源于Mn的原子磁矩,Sb和Bi的原子磁矩对总磁矩的贡献很小而且为负值,它们具有明显的铁磁性特征. 使晶体晶格在±10%的范围内发生各向同性形变,对闪锌矿结构MnSb和MnBi的电子结构进行计算. 计算结果表明,当晶格各向同性形变分别为-1 % ~ 10 %和-4 % ~10 %时,闪锌矿结构MnSb和MnBi仍然保持半金属铁磁性,并且总磁矩都稳定于4.00μB/formula.  相似文献   

8.
采用基于第一性原理的全势能线性缀加平面波方法对闪锌矿结构MnSb和MnBi的电子结构进行自旋极化计算。闪锌矿结构MnSb和MnBi处于晶格平衡时都是半金属性的,并且它们自旋向下电子能带带隙分别是1.32eV 和1.27eV。闪锌矿结构MnSb和MnBi的自旋总磁矩都为4.00μB/formula,总磁矩主要来源于Mn的原子磁矩,Sb和Bi的原子磁矩对总磁矩的贡献很小而且为负值,它们具有明显的铁磁性特征. 使晶体晶格在±10%的范围内发生各向同性形变,对闪锌矿结构MnSb和MnBi的电子结构进行计算. 计算结果表明,当晶格各向同性形变分别为-1 % ~ 10 %和-4 % ~10 %时,闪锌矿结构MnSb和MnBi仍然保持半金属铁磁性,并且总磁矩都稳定于4.00μB/formula.  相似文献   

9.
运用第一性原理方法研究了C掺杂ZnO纳米线的电子性质和磁性质.研究发现C原子趋于替代纳米线表面的O原子.所有掺杂纳米线显示了半导体特性.纳米线的总磁矩主要来源于C原子2p轨道的贡献.由于杂化,相邻的Zn原子和O原子也产生了少量自旋.在超原胞内,C、Zn和O原子磁矩平行排列,表明它们之间是铁磁耦合.铁磁态和反铁磁态的能量差达到了186meV,表明C掺杂ZnO纳米线可能存在室温铁磁性,在自旋电子学领域有很大应用前景.  相似文献   

10.
本文采用第一性原理密度泛函理论系统的研究了Cr原子单掺杂和双掺杂两种尺寸ZnO纳米线的电子性质和磁性质.所有掺杂纳米线的形成能都比纯纳米线的形成能低,表明掺杂增强了纳米线的稳定性.研究发现Cr原子趋于替代纳米线表面的Zn原子.所有掺杂纳米线都显示了金属性.纳米线的总磁矩主要来源于Cr原子3d轨道的贡献.由于杂化,相邻的O原子和Zn原子也产生了少量自旋.在超原胞内,Cr和O原子磁矩反平行排列,表明它们之间是反铁磁耦合.表面双掺杂纳米线铁磁态能量比反铁磁态能量低149 meV,表明Cr掺杂ZnO纳米线可能获得室温铁磁性.  相似文献   

11.
用自旋极化的MS-Xα方法研究了稀土-过渡族化合物SmCo55的电子态密度、自 旋能级劈裂及原子磁矩.研究结果显示,由于化合物中Sm-Co间的轨道杂化效应,使Sm原子原来的5d00空轨道上占据了少量5d电子.由于Co(3d)-Sm(5d)电子间的直接交换作用,导致了Sm-Co间的磁性交换耦合,这是化合物中形成Sm-Co铁磁性长程序的一个重要原因.在SmCo55化合物中存在6个能级呈现负交换耦合,导致了SmCo55关键词: 电子结构 自旋极化 原子磁矩 交换耦合  相似文献   

12.
廖建  谢召起  袁健美  黄艳平  毛宇亮 《物理学报》2014,63(16):163101-163101
基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂.通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高.掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加.Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩.Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子.与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.  相似文献   

13.
从第一性原理出发,在局域自旋密度近似(LSDA)和LSDA+U(在位库仑能)近似下,采用FPLAPW密度泛函能带计算方法研究了Gd2Co2Al的电子结构和磁性.从平均场近似出发,估算了体系的居里温度,并分析了导致体系居里温度偏低的原因.研究结果显示Gd2Co2Al为金属导体,其强的铁磁性的提供者主要是Gd,且Co的局域铁磁性是不稳定的.基于LSDA近似的计算表明Gd2Co2Al呈现亚铁磁性,因为Co与Gd两者磁矩反平行排列.考虑在位库仑能修正的LSDA+U方法则发现一个适当的在位库仑能(U=3.0eV)使体系从亚铁磁态转变为铁磁态,此时Co原子磁矩基本为零与实验结果更为相符.在位库仑能的变化对Co原子磁矩以及磁性原子的能级分布影响较大,但对Gd的磁性基本无影响.由于体系5d-3d态杂化和在位库仑排斥作用竞争使得Co原子磁矩呈现出波动性的特性.  相似文献   

14.
采用基于密度泛函理论的第一性原理计算方法,分别计算了不同Co原子比例单掺杂、Al原子单掺杂和Co-Al共掺杂3C-SiC的电子结构和磁性参数.结果表明:随着掺杂Co原子比例的增大,单个Co原子对体系总磁矩贡献的平均值反而减小.由电子态密度分析掺杂3C-SiC体系中的磁性来源,主要是由Co-3d以及Co原子附近的C-2p电子轨道的自旋极化产生的. Al单掺3C-SiC时体系中每个原子的平均磁矩和体系总磁矩均为0,即Al单掺杂体系不具有磁性.而Co-Al共掺杂得到的体系总磁矩比单掺等量Co时要大约0. 09μB,即Co-3d与Al-3p电子轨道发生轨道杂化,使得Co-Al共掺杂可以增大Co原子对体系总磁矩的贡献.  相似文献   

15.
本文运用第一性原理GGA+U方法计算了C元素单/双掺杂金红石型TiO2的电子结构、磁性和光学性质. 结果表明, C掺杂体系的晶格发生畸变和体积相应增大。单掺杂体系的磁矩为1.3 μB, 磁矩主要归因于杂质态引起的自旋电荷密度不平衡, 杂质态主要由C-2p、O-2p 和Ti-3d的态电子构成, 且它们之间存在明显的杂化现象. 双掺杂体系中C原子之间的反铁磁性耦合比铁磁性耦合更加稳定, 但其磁矩为零. 另外, 随着掺杂浓度的增大, 掺杂体系的带隙由2.58 eV增大到3.4 eV, 且在可见光区域的光吸收效率明显增大. 这表明带隙的减小可能不是光谱吸收增强的主要因素, 而带隙中的杂质态极大地影响了光谱吸收效率.  相似文献   

16.
本文运用第一性原理GGA+U方法计算了C元素单/双掺杂金红石型TiO_2的电子结构、磁性和光学性质.结果表明,C掺杂体系的晶格发生畸变和体积相应增大.单掺杂体系的磁矩为1.3μB,磁矩主要归因于杂质态引起的自旋电荷密度不平衡,杂质态主要由C-2p、O-2p和Ti-3d的态电子构成,且它们之间存在明显的杂化现象.双掺杂体系中C原子之间的反铁磁性耦合比铁磁性耦合更加稳定,但其磁矩为零.另外,随着掺杂浓度的增大,掺杂体系的带隙由2.58 eV增大到3.4 eV,且在可见光区域的光吸收效率明显增大.这表明带隙的减小可能不是光谱吸收增强的主要因素,而带隙中的杂质态极大地影响了光谱吸收效率.  相似文献   

17.
用基于密度泛函理论的第一性原理方法,计算了half-Heusler合金NiFeSb和NiMnSb的晶体结构、磁性及电子结构。计算结果表明,磁性原子Fe和Mn在两种合金的总磁矩中贡献最大,在NiFeSb总磁矩中,Ni原子贡献比例接近在NiMnSb中的2倍,而Sb原子的贡献比例是在NiMnSb中的1/5;两种合金的自旋向上能带都具有明显的金属特征,而自旋向下能带有明显的差别;两种合金费米能级以下的总态密度(DOS)主要由Ni-3d 和Fe-3d(Mn-3d)态决定,费米能级以上主要由Fe-3d(Mn-3d)自旋向下部分决定。  相似文献   

18.
采用密度泛函理论(density functional theory,DFT)中的广义梯度近似(generalized gradient approximation,GGA)分别对Al_(13)和MAl_(12)(M=Ni、Mn)四种初始结构的中性和一价阴离子团簇进行计算研究.发现中性和阴离子团簇的基态几何结构均保持I_h对称性,并且基态阴离子团簇还具有较高的运动学稳定性.电磁性质计算显示:基态的中性和阴离子NiAl_(12)团簇分别带有2_(μB)、3_(μB)的磁矩,Ni原子的磁性几乎完全淬灭;而MnAl_(12)团簇分别带有7_(μB)、6_(μB)的磁矩,Mn原子的磁矩主要由3d轨道提供.基态团簇的表面原子出现了自旋分裂,与中心原子呈现出铁磁性作用.对垂直电离能和垂直亲和能的分析表明:中心原子被替代之后,团簇的得电子能力和失电子能力都有所降低.  相似文献   

19.
一、非晶态结构对微观磁性的影响 非晶态原子排列结构的长程无序性导致微观物理量存在涨落分布. 在非晶态固体中,各处原子(或离子)的元磁矩大小即使在绝对零度下也是不等的.元磁矩大小的涨落分布可以通过核磁共振技术或Mossbaner谱学技术测量超精细场Hhf进行研究.图1示出了一些非晶态固体在远低于磁有序温度的超精细场分布P(Hhf),它反映了绝对零度的固体中元磁矩大小的分布. 稀土原子或离子的元磁矩是4f 未满壳层电子贡献的.由于有外层5d和6s电子屏蔽,这些无磁矩大小受周围原子和电子的影响很小,因而涨落很小.如图1中,非晶态DyNi3合金中…  相似文献   

20.
张富春  张威虎  董军堂  张志勇 《物理学报》2011,60(12):127503-127503
采用自旋极化密度泛函理论系统研究了Cr掺杂ZnO纳米线的电学、磁学以及光学属性.计算结果显示,Cr原子沿[0001]方向替代ZnO纳米线中的Zn原子时体系一般呈现铁磁耦合,沿[1010]和[0110]方向替代Zn原子时体系呈现反铁磁耦合,且磁性耦合状态在费米能级附近出现了明显的自旋劈裂现象,发生了强烈的Cr 3d和O 2p杂化效应.自旋态密度计算结果显示,磁矩主要来源于Cr原子未成对3d态电子的贡献,磁矩的大小与Cr原子的电子排布有关.光学性质计算结果显示,Cr掺杂ZnO纳米线在远紫外和近紫外都具有明显的吸收峰,吸收峰发生了明显的红移.这些结果都表明Cr掺杂ZnO纳米线也许是一种很有前途的稀磁半导体材料. 关键词: ZnO 纳米线 第一性原理 磁性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号