首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
运用第一性原理方法研究了C掺杂ZnO纳米线的电子性质和磁性质.研究发现C原子趋于替代纳米线表面的O原子.所有掺杂纳米线显示了半导体特性.纳米线的总磁矩主要来源于C原子2p轨道的贡献.由于杂化,相邻的Zn原子和O原子也产生了少量自旋.在超原胞内,C、Zn和O原子磁矩平行排列,表明它们之间是铁磁耦合.铁磁态和反铁磁态的能量差达到了186meV,表明C掺杂ZnO纳米线可能存在室温铁磁性,在自旋电子学领域有很大应用前景.  相似文献   

2.
本文采用第一性原理方法系统研究了Mn原子单掺杂和双掺杂ZnO纳米线的稳定性和磁性质.所有掺杂纳米线的束缚能都为负值,表明掺杂增强了纳米线的稳定性.表面掺杂纳米线显示了直接带隙半导体特性,而中间掺杂纳米线显示了间接带隙半导体特性.纳米线的总磁矩主要来源于Mn原子3d轨道的贡献.由于杂化,相邻的O原子和Zn原子也产生了少量自旋.在超原胞内,Mn原子和O原子磁矩平行排列,表明它们之间是铁磁耦合.  相似文献   

3.
采用第一性原理密度泛函理论系统研究Cr原子单掺杂和双掺杂单壁ZnS纳米管的结构和磁性质.研究发现掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是放热的.单掺杂纳米管的总磁矩主要来自Cr原子3d态的贡献.结果表明Cr原子掺杂单壁ZnS纳米管趋向于铁磁态.但铁磁态和反铁磁态的能量差仅为0.036 eV.为获得室温铁磁性,我们用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比反铁磁态低0.497eV.表明此掺杂体系可能获得室温铁磁性.  相似文献   

4.
采用第一性原理密度泛函理论系统研究Cr原子单掺杂和双掺杂单壁Zn S纳米管的结构和磁性质.研究发现掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是放热的.单掺杂纳米管的总磁矩主要来自Cr原子3d态的贡献.结果表明Cr原子掺杂单壁Zn S纳米管趋向于铁磁态.但铁磁态和反铁磁态的能量差仅为0.036 e V.为获得室温铁磁性,我们用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比反铁磁态低0.497e V.表明此掺杂体系可能获得室温铁磁性.  相似文献   

5.
张富春  张威虎  董军堂  张志勇 《物理学报》2011,60(12):127503-127503
采用自旋极化密度泛函理论系统研究了Cr掺杂ZnO纳米线的电学、磁学以及光学属性.计算结果显示,Cr原子沿[0001]方向替代ZnO纳米线中的Zn原子时体系一般呈现铁磁耦合,沿[1010]和[0110]方向替代Zn原子时体系呈现反铁磁耦合,且磁性耦合状态在费米能级附近出现了明显的自旋劈裂现象,发生了强烈的Cr 3d和O 2p杂化效应.自旋态密度计算结果显示,磁矩主要来源于Cr原子未成对3d态电子的贡献,磁矩的大小与Cr原子的电子排布有关.光学性质计算结果显示,Cr掺杂ZnO纳米线在远紫外和近紫外都具有明显的吸收峰,吸收峰发生了明显的红移.这些结果都表明Cr掺杂ZnO纳米线也许是一种很有前途的稀磁半导体材料. 关键词: ZnO 纳米线 第一性原理 磁性  相似文献   

6.
谢建明  陈红霞 《计算物理》2015,32(1):93-100
采用第一性原理密度泛函理论系统研究Fe原子掺杂单壁ZnS纳米管的结构和磁性质.首先比较掺杂纳米管的稳定性.结果表明,掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是一个放热反应.单掺杂纳米管的总磁矩等于掺杂的磁性原子的磁矩,主要来自Fe原子3d态的贡献.Fe原子掺杂单壁ZnS纳米管趋向于反铁磁态.为了得到稳定的铁磁态,用一个C原子替代掺杂体系中的一个S原子.计算发现铁磁态的能量比亚铁磁态低0.164 eV的.在铁磁态和反铁磁态之间存在的巨大的能量差,表明此掺杂体系可能获得室温铁磁性.  相似文献   

7.
过渡金属掺杂氧化锌团簇的物性研究   总被引:1,自引:0,他引:1  
本文采用第一性原理密度泛函理论研究了过渡金属(TM)原子Cr和Fe单掺杂和双掺杂(ZnO)12团簇的结构和磁性质。我们考虑了替代掺杂和间隙掺杂。结果表明Cr 和 Fe间隙掺杂团簇结构最稳定。团簇磁矩主要来自TM原子3d态的贡献,4s 和4p 态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和O原子上也产生少量自旋。最近邻TM原子间的磁性耦合,主要由两个TM原子之间的直接短程铁磁耦合和TM和O原子之间通过p-d杂化产生的反铁磁耦合这两种相互作用的竞争来决定。不同TM原子掺杂团簇的总磁矩与TM原子种类以及掺杂位置有关,说明在(ZnO)12团簇中掺杂不同TM原子在可调磁矩的磁性材料的领域有潜在应用价值。  相似文献   

8.
采用第一性原理密度泛函理论系统地研究Mn原子单掺杂和双掺杂ZnS纳米管的结构、电子性质和磁性质.掺杂纳米管的形成能比纯纳米管形成能更低,表明掺杂是个放热过程.掺杂纳米管的能隙远小于纯纳米管能隙.计算结果表明Mn掺杂纳米管趋于反铁磁态.为了获得室温铁磁性,用一个C原子替代一个S原子.发现铁磁态能量比反铁磁态能量低0.454 eV.如此大的能量差表明这类材料中有可能获得室温铁磁性.  相似文献   

9.
谢建明  陈红霞 《计算物理》2014,31(3):372-378
采用第一性原理密度泛函理论系统地研究Co原子单掺杂和双掺杂(ZnO)12团簇的结构和磁性质.考虑三种掺杂方式:替代掺杂,外掺杂和内掺杂.首先比较各种掺杂团簇的稳定性.结果表明,不管是单掺杂还是双掺杂,外掺杂团簇都是最稳定结构.在结构优化的基础上,对掺杂的(ZnO)12团簇进行磁性计算.发现团簇磁矩主要来自Co-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和O原子也产生少量自旋.Co原子之间的磁性耦合由直接的Co-Co反铁磁耦合和Co和O原子之间通过p-d杂化产生的铁磁耦合这两种相互作用的竞争决定.研究发现外双掺杂团簇存在铁磁耦合,在纳米量子器件有潜在的应用价值.  相似文献   

10.
利用第一性原理方法计算Mn离子掺杂纯净TiO2(001)和F原子吸附的TiO2(001)薄膜的形成能、态密度和磁矩.F原子吸附明显降低TiO2∶Mn薄膜体系的形成能.F原子的吸附导致Mn离子的磁矩减小,而表面O原子的磁矩增大.表面O原子的磁矩主要来源于O原子p x和p y轨道的自旋极化,研究表明表面吸附F原子更有利于Mn离子的掺杂,在一定程度上有利于获得结构稳定的铁磁态半金属特性的TiO2∶Mn薄膜.  相似文献   

11.
本文采用第一性原理密度泛函理论系统的研究了V原子单掺杂和双掺杂(ZnO)12团簇的结构和磁性质。我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂。单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构。团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和O原子上也产生少量自旋。V原子掺杂团簇的总磁矩与掺杂位置有关,说明V掺杂(ZnO)12团簇在可调磁矩的磁性材料领域有潜在应用价值。  相似文献   

12.
本文采用第一性原理密度泛函理论系统的研究了V原子单掺杂和双掺杂(ZnO)_(12)团簇的结构和磁性质.我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂.单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构.团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和O原子上也产生少量自旋.V原子掺杂团簇的总磁矩与掺杂位置有关,说明V掺杂(ZnO)_(12)团簇在可调磁矩的磁性材料领域有潜在应用价值.  相似文献   

13.
张燕如  张琳  任俊峰  原晓波  胡贵超 《物理学报》2015,64(17):178103-178103
本文利用基于密度泛函理论的第一性原理方法计算了钆(Gd)掺杂氧化锌(ZnO)纳米线的磁耦合特性. 讨论了两个Gd原子替换ZnO纳米线中不同位置Zn原子的各种可能情况. 计算发现, ZnO中掺杂的Gd原子处于相邻的位置时它们之间的相互作用是铁磁性的, 并且体系的铁磁性可以通过注入合适数目的电子来得到加强. 同时发现Gd掺杂ZnO纳米线后s-f耦合作用变得显著, 使得体系的铁磁性变得更加稳定, 这也是Gd掺杂ZnO纳米线呈现铁磁性的原因. 这些结果为实验上发现的Gd掺杂ZnO纳米线呈铁磁性提供了理论依据.  相似文献   

14.
本文采用密度泛函理论研究了Cr原子单掺杂和双掺杂(ZnSe)_(12)团簇的结构、电子性质和磁性质.考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂.单掺杂时,外掺杂团簇是最稳定结构,而对于双掺杂,内掺杂团簇是最稳定结构.团簇磁矩主要来自Cr-3d态的贡献,4s和4p态也贡献了一小部分磁矩.由于轨道杂化,相邻的Zn和Se原子上也产生少量自旋.结果显示Cr原子间的磁性耦合是短程相互作用.  相似文献   

15.
陈红霞  刘成林 《计算物理》2013,30(1):148-158
用第一性原理方法系统地研究硫化锌纳米管的稳定性、电子性质和掺杂磁性质.比较三种纳米管的稳定性.研究表明,六边形截面的双壁管的稳定性最高,相同截面的单壁管稳定性次之,而圆截面的之字形和扶手椅纳米管稳定性最低.电子能带结构计算表明它们都是直接带隙半导体.纳米管表面氢吸附后,六边形截面的单壁管转变为间接带隙半导体.研究了磁性原子掺杂六边形截面管的磁性质.发现掺杂纳米管的形成能比纯纳米管的形成能低,说明掺杂过程是一个放热反应.纳米管的总磁矩等于掺杂的磁性原子的磁矩.这些单掺杂纳米管在可调磁的新材料方面有潜在的应用价值.  相似文献   

16.
The electronic structure and magnetic properties of nonmagnetic phosphorus doped ZnO are investigated using first-principles calculation. Both generalized gradient approximation (GGA) and GGA + U calculations show that each substitutional P atom in ZnO induces a magnetic moment of about 1.0 μB, which come mainly from the partially filled p orbitals of the substitutional P and its 12 second neighboring O atoms. The magnetic coupling between the moments induced by P doping is ferromagnetic. The calculated electronic structures indicate that the ferromagnetic coupling can be explained in terms of the two band coupling model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号