首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In active noise control (ANC) systems, virtual microphones provide a means of projecting the zone of quiet away from the physical microphone to a remote location. To date, linear ANC algorithms, such as the filtered-x least mean square (FXLMS) algorithm, have been used with virtual sensing techniques. In this paper, a nonlinear ANC algorithm is developed for a virtual microphone by integrating the remote microphone technique with the filtered-s least mean square (FSLMS) algorithm. The proposed algorithm is evaluated experimentally in the cancellation of chaotic noise in a one-dimensional duct. The secondary paths evaluated experimentally exhibit non-minimum phase response and hence poor performance is obtained with the conventional FXLMS algorithm compared to the proposed FSLMS based algorithm. This is because the latter is capable of predicting the chaotic signal found in many physical processes responsible for noise. In addition, the proposed algorithm is shown to outperform the FXLMS based remote microphone technique under the causality constraint (when the propagation delay of the secondary path is greater than the primary path). A number of experimental results are presented in this paper to compare the performance of the FSLMS algorithm based virtual ANC algorithm with the FXLMS based virtual ANC algorithm.  相似文献   

2.
Investigations into active noise control (ANC) technique have been conducted with the aim of effective control of the low-frequency noise. In practice, however, the performance of currently available ANC systems degrades due to the effects of nonlinearity in the primary and secondary paths, primary noise and louder speaker. This paper proposes a hybrid control structure of nonlinear ANC system to control the non-stationary noise produced by the rotating machinery on the nonlinear primary path. A fast version of ensemble empirical mode decomposition is used to decompose the non-stationary primary noise into intrinsic mode functions, which are expanded using the second-order Chebyshev nonlinear filter and then individually controlled. The convergence of the nonlinear ANC system is also discussed. Simulation results demonstrate that proposed method outperforms the FSLMS and VFXLMS algorithms with respect to noise reduction and convergence rate.  相似文献   

3.
The feedback active noise control (ANC) can be seen as a predictor, the conventional method based on filtered-x least mean square (FXLMS) algorithm can only be useful for linear and tonal noise, but for nonlinear and broadband noise, it is useless. The feedback ANC using functional link artificial neural networks (FLANN) based on filtered-s least mean square (FSLMS) algorithm can reduce some nonlinear noise such as chaotic noise, but the noise cancellation performance is not very well, at the same time, it is not useful to random noise. To solve the problem above, a new feedback ANC using wavelet packet FXLMS (WPFXLMS) algorithm is proposed in this paper. By decomposing the broadband noise into several band-limited parts which are predictable and each part is controlled independently, the proposed algorithm can not only suppress the chaotic noise, but also mitigate the random noise. Compared with FXLMS and FSLMS algorithms, proposed WPFXLMS algorithm also holds the best performance on noise cancellation. Numerous simulations are conducted to demonstrate the effectiveness of the proposed WPFXLMS algorithm.  相似文献   

4.
This study focuses on robust active control of broadband noise in finite ducts. Our analytical and experimental studies suggest the existence of several technical flaws in the path models of conventional active noise control (ANC) systems. These are sensitivity of the path model with respect to boundary conditions, and nonminimum phase (NMP) secondary and reference paths. For finite ducts with small cross sections, the traveling wave model (TWM) may be adopted to find an effective solution to these problems and lead to a robust ANC system. Since many practical "noisy" ducts are finite with small cross sections, the proposed ANC has many practical applications. Its robustness and ability to suppress broadband noise will be explained theoretically and verified experimentally.  相似文献   

5.
This paper focuses on an active noise cancellation system for a home window using a transparent acoustic transducer. In a traditional active noise cancellation system, direct microphone measurements are used for reference and error signals. In the case of the window application, both external and internal sound would be picked up by such microphones. This leads to adverse effects on the performance of the active noise cancellation system and also to distortion of the internal sound. To address this problem, a wave separation technique is proposed to separate the internal and external components of sound. The wave separation algorithm is based on the use of two microphones and an algorithm that separates components based on their direction of travel. An active noise cancellation system is implemented using wave separation for both the error and reference signal measurements. The performance of the resulting ANC system is experimentally tested in a cabin equipped with a window and results are presented. Experimental results show that the new system is able to accurately preserve desired internal sound while cancelling uncorrelated external noise.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) provides a noninvasive tool for observing correlates of neural activity in the brain while a subject listens to sound. However, intense acoustic noise is generated in the process of capturing MR images. This noise stimulates the auditory nervous system, limiting the dynamic range available for displaying stimulus-driven activity. The noise is potentially damaging to hearing and is distracting for the subject. In an active noise control (ANC) system, a reference sample of a noise is processed to form a sound which adds destructively with the noise at the listener's ear. We describe an implementation of ANC in the electromagnetically hostile and physically compact MRI scanning environment. First, a prototype system was evaluated psychoacoustically in the laboratory, using the electrical drive to a noise-generating loudspeaker as the reference. This system produced 10-20 dB of subjective noise-reduction between 250 Hz and 1 kHz, and smaller amounts at higher frequencies. The system was modified to operate in a real MR scanner where the reference was obtained by recording the acoustic scanner noise. Objective reduction by 30-40 dB of the most intense component in scanner noises was realized between 500 Hz and 3500 Hz, and subjective reduction of 12 dB and 5 dB in tests at frequencies of 600 Hz and at 1.9 kHz, respectively. Although the benefit of ANC is limited by transmission paths to the cochlea other than air-conduction routes from the auditory meatus, ANC achieves worthwhile attenuation even in the frequency range of maximum bone conduction (1.5-2 kHz). ANC should, therefore, be generally useful during auditory fMRI.  相似文献   

7.
There are perceived drawbacks to using adaptive IIR filters, as opposed to adaptive FIR filters, for active noise control (ANC). These include stability issues, the possible convergence of estimated parameters to biased and/or local minimum solutions and relatively slow rate of convergence. Stability issues can generally be resolved easily using well-established methods. In this Technical Note convergence rates are compared with particular reference to the active control of noise in a duct, for which the dynamics of the cancellation path are important. The characteristics of this application of ANC set it apart from usual signal processing applications of adaptive IIR filters and this has implications for the convergence properties. Various control approaches are considered: IIR least mean squares (IIR-LMS), IIR recursive least squares (IIR-RLS) with FASPIS (Fast Algorithm Secondary Path Integration Scheme) and FIR-LMS. Numerical examples are presented. It is seen that the cancellation path dynamics generally have the effect of changing the performance surface of the estimated IIR filter from bimodal to unimodal, which has consequences for improving the convergence rate of adaptive IIR filters. It is also seen that IIR-RLS has a comparable rate of convergence to FIR-LMS, with the steady-state performance being as good or better.  相似文献   

8.
Adaptive filter techniques and the filtered-x least mean square (FxLMS) algorithm have been used in Active Noise Control (ANC) systems. However, their effectiveness may degrade due to the nonlinearities and modeling errors in the system. In this paper, a new feedback ANC system with an adaptive neural controller and variable step-size learning parameters (VSSP) is proposed to improve the performance. A nonlinear adaptive controller with the FxLMS algorithm is first designed to replace the traditional adaptive FIR filter; then, a variable step-size learning method is developed for online updating the controller parameters. The proposed control is implemented without any offline learning phase, while faster convergence and better noise elimination can be achieved. The main contribution is that we show how to analyze the stability of the proposed closed-loop ANC systems, and prove the convergence of the presented adaptations. Moreover, the computational complexities of different methods are compared. Comparative simulation results demonstrate the validity of the proposed methods for attenuating different noise sources transferred via nonlinear paths, and show the improved performance over classical methods.  相似文献   

9.
Active noise control (ANC) techniques are based on the emission of an antiphase signal in order to cancel the noise produced by a primary source. ANC has been successfully applied especially for reducing noise in confined environments, such as headphones and ducts. In this study, we present an application of ANC concepts to the design of an anti-noise barrier for an outdoor environment and its experimental testing. Even though passive techniques are effective in noise reduction at middle-high frequencies, they become less efficient at low frequencies (below 300 Hz) due to the limited dimensions of commonly deployable barriers. In this paper, we analyze the properties of a low-cost active noise system able to efficiently operate on stationary, almost pure-tone, low-frequency noise, such as that produced by electrical transformers and reactors in power and transformation plants. A prototype has been implemented and on-the-field experimental tests have been carried out. The results (confirmed also by numerical simulations) demonstrate a remarkable efficiency in the far field, with a reduction up to 15 dB with respect to the absence of the ANC system.  相似文献   

10.
It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein’s equations. The fact that Einstein’s general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein’s theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in \(D=4\) for both the \(C^2\) invariant and the Euler (Gauss–Bonnet) invariant can only be achieved for N-extended supergravity multiplets with \(N \ge 5\).  相似文献   

11.
I.IntroductionThereverberantnoisesmaybereducedwithanactivenoisecontrol(ANC)systcmformedbyacornermicrophonc-amplifier-1oudspcakersystemina.oom.lllThismeth-odbascdonthenormalmodccancelingprincip1chasalreadybeenclarifiedbothinthco-ryandexperimcnts,andthclimitationandpotcntialityofitsapp1icationalsodiscussedinapreviouspaper.Thediscussionsinthepastlimitedmost1ytothesteadyconditionofnoiscfield,andthisisextendedtothetransientcondihoninthcprcsentwork,viz.thein-llucnceofthecornerANCsystemwhenthenois…  相似文献   

12.
Feedforward controllers are used in many active noise control (ANC) systems to generate destructive interference in noise fields. An ideal feedforward ANC controller should have an infinite impulse response (IIR) transfer function, but most available feedforward ANC controllers have finite impulse responses (FIR) instead. The main reason is related to the adaptation algorithms of ANC systems. In general, adaptive FIR filters converge faster with guaranteed stability. In this study, the adaptive Laguerre filter is proposed and tested in an ANC application with positive experimental effects. The new ANC controller is an IIR filter, but its adaptation is similar to that of a FIR filter with fast convergence and guaranteed stability. Detailed explanations and analysis are presented in the main text.  相似文献   

13.
李楠  安峰岩  杨飞然  杨军 《应用声学》2018,37(3):391-399
针对传统FxLMS算法前馈自适应主动降噪耳机系统因果性条件不足时在宽带噪声环境中产生的高频噪声抬升问题,该文引入权重滤波误差信号FxLMS算法用于抑制高频噪声的抬升,但该算法带来了低频降噪量不足问题。因此,进一步提出将固定系数混合控制器与权重滤波误差信号FxLMS算法结合,在解决高频噪声抬升问题的同时,保证了良好的低频降噪量。基于DSP平台实现了提出的主动降噪耳机方案。实验证明,该方案针对宽带和单频等噪声都取得了较好的降噪效果。  相似文献   

14.
Most feedforward active noise control (ANC) algorithms require models of electro-acoustic paths. To obtain satisfactory attenuation and keep the system stable these models have to represent the plant well. This, according to the literature, requires estimation of many, often hundreds of coefficients. Then, control filters also have very large, comparable structures. Such an approach reveals significant drawbacks if paths of the plant are subject to change. Estimation of so many plant models and control filter coefficients is very slow and time consuming. Therefore, the speed of adaptation is substantially reduced. This can be accepted in some unmoveable plants like acoustic ducts. However, there are many other plants, e.g., active personal hearing protection devices, in which rapid reaction is also of utmost interest not to annoy the user. In this paper, an alternative approach is proposed that does not need precise models except an estimate of the discrete time delay of the plant. However, according to the literature this leads to a relatively narrow attenuation band, which is confirmed for classical control structures like finite and infinite impulse response filters. This becomes a premise to design a new control algorithm. First, the so-called phase shifters (in two versions) are designed. They enable to control narrowband noise on comparable levels with at least an order less parameters than the filters mentioned above. To control broadband noise, the idea of phase shifter banks is then put forward. In turn, to extend the attenuation band conversion of sampling frequency is adopted to noise control problems. Finally, the algorithm combining advantages of phase shifter banks and conversion of sampling frequency allows controlling of any noise over any frequency band, with limits imposed only by the signal processor available and pass-band of the secondary source. Although this algorithm is designed generally and can be applied to any ANC plant, for laboratory experiments an active personal hearing protection device is used.  相似文献   

15.
A method for theoretically calculating the coherence between sound pressure inside a rectangular room in a high-rise building and that outside the open window of the room is proposed. The traffic noise transmitted into a room is generally dominated by low-frequency components, to which active noise control (ANC) technology may find an application. However, good coherence between reference and error signals is essential for an effective noise reduction and should be checked first. Based on traffic noise prediction methods, wave theory, and mode coupling theory, the results of this paper enabled one to determine the potentials and limitations of ANC used to reduce such a transmission. Experimental coherence results are shown for two similar, empty rectangular rooms located on the 17th and 30th floors of a 34 floor high-rise building. The calculated results with the proposed method are generally in good agreement with the experimental results and demonstrate the usefulness of the method for predicting the coherence.  相似文献   

16.
The ability of active noise control (ANC) systems to achieve a more pleasant sound has been evaluated by means of sound quality analysis of a real multi-channel active noise controller. Recordings of real car engine noises had been carried out using a HeadacousticsTM binaural head simulator seated in a typical car seat, and these signals together with synthesized noise have been actively controlled in an enclosed room.The sound quality study has focused on the estimation of noise quality changes through the evaluation of the sense of comfort. Two methods have been developed: firstly, a predictive method based on psychoacoustic parameters (loudness, roughness, tonality and sharpness); and secondly, a subjective method using a jury test. Both results have been related to the spectral characteristics of the sounds before and after active control.It can be concluded from both analyses that ANC positively affects acoustic comfort. The engine noise mathematical comfort predictor is based on loudness and roughness (two psychoacoustic parameters directly influenced by ANC), and has satisfactorily predicted the improvements in the pleasantness of the sounds. As far as the subjective evaluation method is concerned, the jury test has showed that acoustic comfort is, in most cases, directly related to the sense of quietness. However, ANC has also been assessed negatively by the jury in the cases that it was unable to reduce the loudness, perhaps because of the low amplitudes of the original sounds.Finally, from what has been shown, it can be said that the subjective improvements strongly depends on the attenuation level achieved by the ANC system operation, as well as the spectral characteristics of the sounds before and after control.  相似文献   

17.
The performance of a nonlinear active noise control (ANC) system based on the recently developed filtered-s least mean square (FsLMS) algorithm deteriorates when strong disturbances in the ANC system are acquired by the microphones. To surmount this shortcoming, a novel robust FsLMS (RFsLMS) algorithm is proposed for a functional link artificial neural network (FLANN) based ANC system. The new ANC system is least sensitive to such disturbances and does not call for any prior information on the noise characteristics. The results obtained from simulation study establish the effectiveness of this new ANC scheme.  相似文献   

18.
This paper follows up on an earlier paper of the author [1] dealing with the issue of multi-scattering in a typical active noise control system. This work concerns the effects of the presence of a neighboring wall on the performance of an active noise cancellation system when the dimension of sources is added to the analysis. Effect of the adjacent wall is taken into account using the image method, and multi-scattering is also allowed for by the spherical harmonic addition theorem. The recognized method of separation of variables and appropriate wave field expansions in spherical coordination are used to derive the required analytical solutions. A primary spherical source radiates at different modes, and a secondary source is modeled as a radially vibrating cap which resembles a real sound speaker. Our particular interest in this work is to investigate effects of multi-scattering at intermediate working frequencies of ANC, e.g., about 100–500 Hz. In addition to emphasizing the importance of multi-scattering, this work endeavors to find the appropriate cap angle of the control source to achieve acceptable noise attenuation for different vibrating modes of the primary source (monopole, dipole). Numerical results reveal that the presence of a rigid wall will considerably change the adequate velocity of the secondary source and also show that using a baffled spherical piston instead of a monopole control source will obviously improve the sound minimization efficiency when the primary source vibrates in the n = 1 mode in a low frequency range. Published in Russian in Akusticheskiĭ Zhurnal, 2008, Vol. 54, No. 1, pp. 5–17. The text was submitted by the author in English.  相似文献   

19.
The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.  相似文献   

20.
王冉  王晓琳  杨军 《应用声学》2021,40(6):897-903
提出了一种基于脉冲声的三维空间中刚性球散射声分离方法,并利用前馈、固定系数控制方式对分离出的散射声进行有源控制,抑制散射声强度,实现了刚性球散射体在观测点处“声学不可见”。该方法利用脉冲信号作为初级噪声,通过有无刚性球时传声器采集脉冲信号的差值确定散射声大小,实现散射声与声源直达声的分离。对分离出的散射声进行多通道有源控制以验证该文所提分离方法及控制系统的有效性。实验结果表明,700~1000 Hz范围内,有源控制开启后,双通道散射声的平均降噪量大于5 dB,多通道散射声的平均降噪量大于8 dB,且误差传声器处采集的残余声场与无刚性球时采集的初级声场信号波形基本一致,实现了刚性球散射体在误差传声器处“声学不可见”。此外,参考传声器布放位置的选取问题也在该文做了详细讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号