首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4588篇
  免费   163篇
  国内免费   12篇
化学   2726篇
晶体学   85篇
力学   151篇
数学   333篇
物理学   1468篇
  2023年   42篇
  2022年   53篇
  2021年   82篇
  2020年   101篇
  2019年   93篇
  2018年   115篇
  2017年   85篇
  2016年   132篇
  2015年   109篇
  2014年   162篇
  2013年   262篇
  2012年   348篇
  2011年   338篇
  2010年   194篇
  2009年   171篇
  2008年   202篇
  2007年   191篇
  2006年   188篇
  2005年   151篇
  2004年   116篇
  2003年   115篇
  2002年   89篇
  2001年   75篇
  2000年   62篇
  1999年   54篇
  1998年   33篇
  1997年   53篇
  1996年   58篇
  1995年   44篇
  1994年   75篇
  1993年   83篇
  1992年   79篇
  1991年   49篇
  1990年   50篇
  1989年   54篇
  1988年   35篇
  1987年   39篇
  1986年   38篇
  1985年   34篇
  1984年   33篇
  1983年   37篇
  1982年   39篇
  1981年   49篇
  1980年   40篇
  1979年   31篇
  1978年   26篇
  1977年   34篇
  1975年   24篇
  1974年   27篇
  1973年   33篇
排序方式: 共有4763条查询结果,搜索用时 265 毫秒
1.

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of???7.274 and???5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.

Graphic abstract
  相似文献   
2.

Soil–water retention curve (SRWC), also called soil moisture characteristic, is used for simulation models of soil water storage or soil aggregate stability. The present study addresses the modeling of SRWC with particular attention paid to hysteresis effects of water filling and draining the pores attributed to ink-bottle effects. For that purpose, an idealized pore size distribution previously developed for predicting water sorption isotherms on cementitious materials, and which can consider the double porosity structure of soils, is used. The input data of the model are assessed only from mercury intrusion porosimetry tests (MIP) and from grain size distribution (GSD). The hysteretic behavior of SRWC is reproduced in a satisfactory way. The model can also predict the specific surface area.

  相似文献   
3.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
4.
Journal of Thermal Analysis and Calorimetry - Nanofluids have gained recent attention because of their potential applications in diverse engineering fields like enhancing thermal transport,...  相似文献   
5.
6.
An attempt is made to find out the suitable entrainment and exit boundary conditions in laminar flow situations. Streamfunction vorticity formulation of the Navier–Stokes equations are solved by ADI method. Two‐dimensional laminar plane wall jet flow is used to test different forms of the boundary conditions. Results are compared with the experimental and similarity solution and the proper boundary condition is suggested. The Kind 1 boundary condition is recommended. It consists of zero first derivative condition for velocity variable and for streamfunction equation, mixed derivative at the entrainment and exit boundaries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
Sushan Konar  Subinoy Das 《Pramana》2004,62(6):1241-1254
Neutrino-photon processes, forbidden in vacuum, can take place in the presence of a thermal medium and/or an external electro-magnetic field, mediated by the corresponding charged leptons (real or virtual). Such interactions affect the propagation of neutrinos through a magnetized plasma. We investigate the neutrino-photon absorptive processes, at the one-loop level, for massless neutrinos in a weakly magnetized plasma. We find that there is no correction to the absorptive part of the axial-vector-vector amplitude due to the presence of a magnetic field, to the linear order in the field strength.  相似文献   
8.
The fusion evaporation reaction 122Sn(14N, 4n)132La was used to populate the high-spin states of 132La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2- and the isomeric state 6-. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the πh 11/2 ⊗ νh 11/2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. Received: 12 August 2002 / Accepted: 18 March 2003 / Published online: 7 May 2003  相似文献   
9.
Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.  相似文献   
10.
The understanding of mesoscopic transport has now attained an ultimate simplicity. Indeed, orthodox quantum kinetics would seem to say little about mesoscopics that has not been revealed — nearly effortlessly — by more popular means. Such is far from the case, however. The fact that kinetic theory remains very much in charge is best appreciated through the physics of a quantum point contact. While discretization of its conductance is viewed as the exclusive result of coherent, single-electron-wave transmission, this does not begin to address the paramount feature of all metallic conduction: dissipation. A perfect quantum point contact still has finite resistance, so its ballistic carriers must dissipate the energy gained from the applied field. How do they manage that? The key is in standard many-body quantum theory, and its conservation principles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号