首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   21篇
化学   284篇
晶体学   1篇
力学   16篇
数学   125篇
物理学   137篇
  2023年   6篇
  2022年   5篇
  2021年   20篇
  2020年   25篇
  2019年   20篇
  2018年   18篇
  2017年   11篇
  2016年   28篇
  2015年   24篇
  2014年   29篇
  2013年   33篇
  2012年   50篇
  2011年   43篇
  2010年   27篇
  2009年   24篇
  2008年   31篇
  2007年   32篇
  2006年   23篇
  2005年   15篇
  2004年   9篇
  2003年   11篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
  1973年   2篇
  1967年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
1.
2.
Ambrosia artemisiifolia L. is responsible for serious allergies induced on humans. Different approaches for its control were proposed during the COST Action FA1203 “Sustainable management of Ambrosia artemisiifolia in Europe” (SMARTER). Fungal secondary metabolites often show potential herbicidal activity. Three phytotoxins were purified from the fungal culture filtrates of Colletotrichum gloeosporioides, isolated from infected leaves of A. artemisiifolia. They were identified by spectroscopic and chemical methods as colletochlorin A, orcinol and tyrosol (1, 2 and 3). The absolute configuration 6’R to colletochlorin A was assigned for the first time applying the advanced Mosher’s method. When assayed by leaf-puncture on A. artemisiifolia only 1 caused the appearance of large necrosis. The same symptoms were also induced by 1 on ambrosia plantlets associated with plant wilting. On Lemna minor, colletochlorin A caused a clear fronds browning, with a total reduction in chlorophyll content.  相似文献   
3.
In the present study were studied the ferromagnetic La1−xSrx (Mn1−yCoy)zO3 (LSMCO) films with Co content y = 0 to 0.18, grown on LaAlO3 substrates by advantageous pulsed-injection metalorganic chemical vapor deposition technique. The LSMCO films exhibit negative colossal magnetoresistance effect; therefore, they are interesting as potential material for the applications in magnetic field sensing. The changes of lattice volume in the investigated LSMCO films were monitored by X-ray diffraction measurements revealing a transition from tensile to compressive strain with increase of Co content. Additionally, from the atomic force microscopy images, the surface smoothening with increase of y was determined. Despite the reduction of the out-of-plane lattice parameter of LSMCO, the increase of lattice volume in the whole Co-doping range was observed. The X-ray photoelectron spectroscopy combined with Ar+ ion sputtering was used for the investigation of chemical composition of the LSMCO films and demonstrated the change and redistribution of oxidation states of Mn and Co on the surface and in the volume of the films. Regardless of the structural changes and charge distribution of Co and Mn cations, epitaxial LSMCO exhibits ferromagnetic properties and magnetoresistance values increases with augmenting Co content in the range of y = 0 to 0.18.  相似文献   
4.
The main purpose of the present work is to analyze a series of Ag nanoparticles (NPs) with different size or ligand functionalization by using X-ray photoelectron spectroscopy (XPS) and to identify the differences in the band-shape and energy peak position of photoemission spectra due to the particle dimension. A transmission electron microscopy characterization was performed, to verify the consistency of the results. Three types of samples were prepared starting from AgNO3 water solution and adding different capping agents. In the first two cases, the formation of NPs was promoted by the reduction of silver ions Ag+1 to metallic Ag0 through the addition of sodium borohydride, whereas in the last case, it was triggered by the exposure to UV light. Depending on the size of the NPs, a different physical behavior can be recognized. NPs with diameter of about 5 nm are characterized by the phenomenon of localized surface plasmon resonance (LSPR). The other type of samples having a diameter of about 1.5 nm presents discrete energy levels instead of electronic bands, and in this case, a typical fluorescence phenomenon can be observed. In the latter case, we can refer to such systems as nanoclusters. The XPS analyses were focused on the Ag 3D spectra looking for the possible shifts of the Ag doublet as a function of the particles size. The ultraviolet photoelectron spectroscopy with He II source was used for the investigation of possible changes in the valence band.  相似文献   
5.
The W-1%La2O3 alloy has been irradiated by a single laser pulse (λ = 1064 nm) to simulate transient thermal loads of high energy occurring in a tokamak under operative conditions. A zone with a diameter of ~2 mm, namely, much larger than the focal spot, results to be affected by the pulse, and a crater of about 300 μm is observed in its center. La2O3 particles are not present inside the crater. The change of surface morphology is accompanied by elemental redistribution. Multipoint XPS analysis evidenced that the concentration of La is very low in the crater and increases moving toward the border of the affected zone while that of W shows an opposite trend. The composition changes involve only the outmost 5 nm of the sample: through depth profiling, no differences of chemical composition were detected deeper in the alloy between the center and external border of the affected area.  相似文献   
6.
Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2(sq)](PF6) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.  相似文献   
7.
Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy. Both E and Z isomers have been accurately characterized, thus providing a reliable basis to guide future astronomical observations. A further characterization has been carried out by nuclear magnetic resonance spectroscopy, showing the feasibility of this synthetic approach in solution. The temperature dependence as well as possible mechanisms of the thermolysis process have been examined.  相似文献   
8.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   
9.
The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this reason, methods for a rapid quantification of these compounds are required. Most of the methods for α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However, these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR) and partial least squares regression (PLSR) were employed to create two calibration models for the prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance (ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and 0.27%, respectively) with the reference technique.  相似文献   
10.
We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号