首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
选取典型的助熔剂,利用助熔剂法制备了节能灯用(Ce0.67,Tb0.33)MgAl11O19绿色荧光粉,并对其发光性能进行了对比测试。研究了各单一或复合助熔剂对(Ce0.67,Tb0.33)MgAl11O19荧光粉的发光亮度及颗粒形貌的作用及影响,并找到了最佳复合助熔剂组分为0.2%H3BO3+2.0%Li2CO3+2.0%AlF3(质量分数)。所制备的(Ce0.67,Tb0.33)MgAl11O19荧光粉样品具有较为规则的形貌,且发光亮度与(Ce0.67,Tb0.33)MgAl11O19现有商用粉的比值为103:100。  相似文献   

2.
采用高温固相法成功地合成了新型高效绿色荧光粉(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+。通过XRD和荧光光谱等对其结构及发光性能进行了系统研究。结果表明:新合成的(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+与典型的商用绿粉(Ce0.67Tb0.33)MgAl11O19(CMAT)具有相同的晶体结构;激发光谱处于237~326 nm范围内,由一个峰位位于291 nm的宽激发带组成,这是典型的Ce3+的特征激发;在紫外光激发下,该荧光粉除了在490,541,590,620 nm存在Tb3+的特征发射峰外,还在516 nm出现了一个较强的归属于Mn2+的4T1g(G)→6A1g(S)电子跃迁的宽发射峰。Mn2+作为共激活剂增大了该荧光材料在绿色区域的发射面积,其中(Ce0.67Tb0.33)Mg0.850Al11O19∶0.150Mn2+荧光粉发射光谱的积分面积最大,为CMAT的226%,其CIE坐标为(0.194,0.695),比CMAT(0.288,0.572)更加接近NTSC标准值(0.21,0.71),即Mn2+的引入不但提高了荧光粉的发光效率,而且改善了其色纯度。结果表明新型(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+绿色荧光粉比传统的CMAT在显示领域具有更好的潜在应用前景。  相似文献   

3.
采用高温固相法合成了用于紫外芯片(UVLED)激发的绿色荧光粉Ca2SrAl2O6:Ce3+,Tb3+。测量了其激发光谱和发射光谱,结果显示,材料的发射谱由峰值位于497,545,595和623nm的4组窄带组成,其中位于545nm的发射峰最强,样品能发射很好的绿光;监测545nm发射峰,得到的激发谱由位于320~400nm之间的激发带组成,能被UVLED很好地激发。研究了Ca2SrAl2O6荧光粉中Ce3+对Tb3+发光的敏化现象,发光的敏化作用缘于Ce3+和Tb3+之间的高效无辐射能量传递。共掺激活剂的最佳掺杂浓度为4mol%。  相似文献   

4.
掺铈、钆、铽的三磷酸镧的合成及其光谱   总被引:1,自引:1,他引:0  
本文首次采用溶液沉淀法合成了一系列LaP3O9:Ce、Gd、Tb磷光体.经X射线结构分析表明、它们是较纯的LaP3O9相,系环状结构,属于正交晶系,其晶胞参数为a=11.19(Å),b=8.54(Å),c=7.28(Å).测定了这些化合物的激发和发射光谱、相对亮度及Ce3+的荧光寿命,观察到在此基质中Ce3+与Gd3+光谱重叠,它们之间存在着一定的相互作用,Ce3+能有效地敏化Tb3+,从而大大地增强Tb3+的发射,LaP3O9:Ce、Tb可能成为一种新的高效绿色发光材料.在Ce-Tb共掺的体系中加入少量Gd却使发光亮度稍有下降,这可能是由于Gd3+的竞争吸收和独立发射所致.从Ce3+的荧光寿命变化可知,Ce3+对Gd3+的能量传递较弱,而Ce3+对Tb3+则很有效.  相似文献   

5.
采用高温固相法合成了Ba3Tb(BO3)3和Ba3Tb(BO3)3:Ce3+两种绿色荧光粉,并研究了材料的发光性质.Ba3Tb(BO3)2材料呈多峰发射,发射峰位于439,493,547,589和629 nm,分别对应Tb3+的5D3→7F4和5D4→7F1=6,5,4,3跃迁发射,主峰为547 nm;监测547 nm发射峰,所得激发光谱由4f75d1宽带吸收(200-330 nm)和4f4f电子吸收(330-400 nm)组成,主峰为380 nm.以Ce3+激活Ba3Tb(BO3)3,所得Ba3Tb(BO3)3:Ce3+与Ba3Tb(BO3),材料的发射光谱分布相同,但发射强度明显增强,说明Ce3+对Tb3+产生了很好的敏化作用;监测547 nm最强发射峰,所得激发光谱为宽带,主峰位于360 nm.改变H3BO3量,Ba3Tb(BO3)3:Ce3+材料的发射强度随之变化,当H3BO3过量15 wt%时,发射强度最大.上述研究结果表明Ba3Tb(BO3)3:Ce3+是一种很好的适于UV-LED管芯激发的白光LED用绿色荧光粉.  相似文献   

6.
采用金属醇盐法制备MgAl2O4前躯体,通过高温煅烧2~4h得到纯相MgAl2O4粉体,再将其与YAG∶Ce荧光粉均匀混合,利用热压烧结并结合热等静压处理得到MgAl2O4/Ce∶YAG透明陶瓷。利用XRD,SEM,EDS和荧光光谱仪对样品进行物相和光学性能分析。实验表明样品由MgAl2O4和YAG两相组成,YAG晶粒均匀地分散在MgAl2O4基质中。样品在340和475nm有两个激发峰。发射光谱在533nm处有一宽峰,属于Ce3+的5d→4f特征跃迁发射,其荧光寿命为59.74ns。结果表明,MgAl2O4/Ce∶YAG透明陶瓷是一种可用于白光LED的新型荧光材料。  相似文献   

7.
Si(100)衬底上Mg_(0.33)Zn_(0.67)O薄膜的结构及光学性能   总被引:2,自引:2,他引:0  
采用射频磁控溅射法在Si(100)衬底上制备了Mg_(0.33)Zn_(0.67)O薄膜,研究了Mg_(0.33)Zn_(0.67)O薄膜的结构和光学性能。结果表明,Si(100)衬底上Mg_(0.33)Zn_(0.67)O薄膜呈六方纤锌矿结构,薄膜沿c方向取向生长,且c轴方向晶格增大0.03 nm。薄膜呈现优异的半导体特性,激子吸收峰位于297 nm,禁带宽度约为4.3 eV。薄膜平均粒径约为20 nm。薄膜在深紫外激发下的荧光发射位于368 nm。  相似文献   

8.
利用水热法制备了LaF3∶Ce,Tb纳米荧光粉,分别用XRD,TEM和发光光谱等测试手段对粉末的物相、形貌、发光性质进行了研究。XRD和TEM结果表明所得的纳米荧光粉粒度均匀、结晶完好,呈规则的六边形形状,颗粒平均尺寸为30nm,掺入Ce3 和Tb3 ,杂质后晶格结构没有变化。发光光谱的测试表明Ce3 呈现其宽带发射;Tb3 呈现其特征绿色发射,最强峰位于544nm处。Ce3 的掺入有效敏化了Tb3 的发光,通过进一步光谱分析证实了在LaF3∶Ce,Tb体系中存在Ce3 →Tb3 的能量传递过程。当Ce3 和Tb3 掺杂摩尔浓度分别为35mol%和5mol%时具有最强荧光发射。制备的样品无需煅烧即可获得比体相材料高2倍的荧光,也高于优化条件下煅烧样品的荧光。  相似文献   

9.
利用水热法制备了LaF3∶Ce,Tb纳米荧光粉,分别用XRD,TEM和发光光谱等测试手段对粉末的物相、形貌、发光性质进行了研究.XRD和TEM结果表明:所得的纳米荧光粉粒度均匀、结晶完好,呈规则的六边形形状,颗粒平均尺寸为30 nm,掺人Ce3 和Tb3 ,杂质后晶格结构没有变化.发光光谱的测试表明:Ce3 呈现其宽带发射;Tb3 呈现其特征绿色发射,最强峰位于544 nm处.Ce3 的掺入有效敏化了Tb3 的发光,通过进一步光谱分析证实了在LaF3∶Ce,Tb体系中存在Ce3 →Tb3 的能量传递过程.当Ce3 和Tb3 掺杂摩尔浓度分别为35 mol%和5 mol%时具有最强荧光发射.制备的样品无需煅烧即可获得比体相材料高2倍的荧光,也高于优化条件下煅烧样品的荧光.  相似文献   

10.
采用高温固相法制备了BaAl2Si2O8∶Tb3+,Ce3+系列的荧光材料,讨论了Tb3+,Ce3+单掺及Tb3+,Ce3+共掺样品的光谱性质及发光机理,分析了Ce3+与Tb3+之间的能量传递过程.通过对样品进行XRD,荧光光谱,色坐标等测试.结果表明,Tb3+,Ce3+的掺杂没有改变BaAl2Si2O8晶体的结构.BaAl2Si2O8∶Tb3+发出明亮的绿光,发光峰分别位于487,545,583和621 nm对应于Tb3+的5D4→7FJ(J=6,5,4,3)特征发射.Ce3+的掺入没有改变BaAl2Si2O8∶Tb3+发射光谱的位置,但使其激发谱由窄带激发变成了宽带激发增加了谱带多样性,发光强度有了明显的增强,而且颜色也具有一定的协调性,使其在实际运用方面具有更大的灵活性.发光强度增强的原因不仅仅是因为Ce3+的敏化作用,还与Ce3+和Tb3+之间存在能量传递有密切关系.通过猝灭法计算了,Ce3+与Tb3+之间的能量传递的临界距离为15.345 nm,并且证明了能量传递是由偶极-偶极相互作用产生的.通过计算得到能量传递效率最高达到了76.04%.  相似文献   

11.
本文研究了Ce、Pr、Nd、Sm、Eu、Dy Ho、Er、Tm、Yb十种稀土元素对La2O2S:Tb发光性能的影响.这些稀土元素特别是Ce+3、Pr+3、Eu+3和Yb+3,对La2O2S:Tb的发光亮度起猝灭作用.除了Eu+3和Pr+3以外,它们含量≤0.1%时对La2O2S:Tb的发光光谱和发光的颜色没有明显的影响.分别用阴极射线、X射线和254nm紫外线激发时,La2O2S:Tb发光性能变化的规律基本上相同.  相似文献   

12.
(Ce,Gd,Mn)MgB5O10磷光体的合成及其发光   总被引:5,自引:3,他引:2  
洪广言  贾庆新 《发光学报》1989,10(4):304-310
本文采用固相反应的方法合成了一系列(Ce,Gd,Mn)MgB5O10磷光体。观察到合成温度、灼烧时间、原料配比对磷光体的形成和发光亮度有重要影响。X射线衍射分析表明,磷光体结构与LaMgB5O10相同,属单斜晶系、空间群P21/c。用EPR确定了磷光体中锰离子为二价。测定了(Ce0.2La0.2)MgB5O10,(Gd0.7La0.3)MgB5O10,(Mn0.05La0.95)MgB5O10,(Ce0.2Mn0.05La0.75)MgB5O10,(Gd0.95Mn0.05)MgB5O10、(Ce0.2Gd0.8)MgB5O10和(Ce0.2Gd0.75Mn0.05)MgB5O15等磷光体的光谱。根据光谱数据讨论了(Ce0.2Gd0.75Mn0.05)MgB5O10磷光体中能量传递过程为:Ce3+→Mn2+,Gd3+→Mn2+以及Ce3+→Gd3+→Mn2+,其中Ce3+离子可将能量高效地传递给Gd3+,Gd3+离子起着中间体的作用。  相似文献   

13.
La4(P2O7)3:Ce,Gd,Tb磷光体的合成与光谱性质   总被引:2,自引:0,他引:2       下载免费PDF全文
高信  洪广言 《发光学报》1993,14(1):25-31
本文首次采用溶液沉淀法合成了一系列La4(P2O7)3;Ce,Gd,Tb磷光体.经X射线分析表明,它们属于纯的La4(P2O7)3相。测定了这些化合物的激发和发射光谱、相对亮度及Ce3+的发光寿命,观察到在此基质中Ce3+与Gd3+的光谱重叠,它们之间存在着一定的相互作用,使(La0.64Ce0.3Gd0.064(P2O7)3的亮度比(La0.7Ce0.34(P2O7)3和(La0.94Gd0.064(P2O7)3有少许增加.此外,Ce3+能有效地敏化Tb3+9,从而大大增强Tb3+的发射.然而,Gd3+与Tb3+共存时存在着竞争吸收和独自发射,使(La0.80Gd0.06Tb0.144(P2O7)3的亮度与单掺的(La0.86Tb0.144(P2O7)3相比有少许降低.相应地在Ce,Gd和Tb共掺时,由于Gd3+的影响,使Tb3+的发射减弱,从而总的发光相对亮度有所降低。  相似文献   

14.
采用传统的高温固相法合成了一种新型的绿色荧光粉Sr3Y(PO4)3∶Ce3+,Tb3+,利用X射线衍射(XRD)和荧光光谱(PL)对该材料的晶体结构和光学性能进行表征。结果分析表明,制得样品的XRD图谱不含Sr3Y(PO4)3以外的杂峰,稀土掺杂并未改变基质的晶体结构,得到的样品为纯相的磷酸钇锶。从本文实验中明显观察到Sr3Y(PO4)3∶Tb3+的激发光谱和Ce3+的发射光谱在320~390nm有重叠,表明在Sr3Y(PO4)3基质中可存在从Ce3+到Tb3+的能量传递。在紫外光(315nm)激发下该荧光粉发射出了Ce3+的蓝光(320~420nm)和Tb3+的黄绿光(480~500nm)和(530~560nm),当Ce3+的浓度为7%,Tb3+的浓度由1%增大到50%时,通过Ce3+的4f→5d电子跃迁将能量传递到Tb3+,然后发生5 D4→7 Fj电子跃迁,该荧光粉发射光谱可由蓝光逐渐调节为黄绿光。本文绘制了Ce3+,Tb3+的能级和Sr3Y(PO4)3∶Ce3+,Tb3+荧光粉中的能量转移过程示意图,并详细阐述了由Ce3+到Tb3+的能量传递过程。通过对比Ce3+和Tb3+的发光强度以及由Ce3+到Tb3+能量转移效率的相对变化,可以得出,随着掺入的Tb3+浓度不断增加,Tb3+的发射强度(5 D4→7 Fj)和能量转移效率(Ce3+到Tb3+)也在增大,而Ce3+的发射强度却有了明显的下降。当Tb3+的浓度为50%时能量转移效率可高达80%。通过CIE色度图也可以看出,当Tb3+浓度不断增大,样品的色坐标从图中的蓝色区域移动到绿色区域。所以在紫外光激发下,Ce3+和Tb3+共掺Sr3Y(PO4)3可作为一种绿光荧光粉应用在白光LED或LCD背光源上。  相似文献   

15.
稀土离子Ce,Tb掺杂硼磷酸锶荧光粉的发光性质   总被引:1,自引:1,他引:0  
采用高温固相法合成了2SrO.0.84P2O5.0.16B2O3:RE3 (RE=Ce,Tb)荧光粉,研究了其中Ce3 ,Tb3 的光谱性质,以及Ce3 与Tb3 共掺杂时的能量传递现象。发现Ce3 在232,296nm处有两个激发带,发射光谱中也有两个峰,且两者重叠严重,用高斯分峰拟合得到曲线峰值分别为325,344nm,这两个发射峰可能来自于两个不同的发光中心的发射。Tb3 的激发光谱中以370nm的激发峰最强,发射光谱中同时观测到来自5D3和5D4的发射,表明在此体系中能级5D3和5D4间的无辐射跃迁过程不显著。Ce3 和Tb3 在此基质中的共掺杂存在Ce3 到Tb3 的有效能量传递。  相似文献   

16.
Ce~(3+)、Tb~(3+)在SrZnP_2O_7材料中的发光及能量传递   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温固相法制备了Ce3+、Tb3+激活的SrZnP2O7材料,并研究了材料的发光性质。在290 nm紫外光激发下,SrZnP2O7∶Ce3+材料的发射光谱为双峰宽谱,主峰位于329 nm。SrZnP2O7∶Tb3+材料的发射光谱由420,443,491,545,587,625 nm六个峰组成,分别对应Tb3+的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3特征发射;监测545 nm最强发射峰,所得激发光谱覆盖200~400 nm,主峰为380 nm。研究了Ce3+、Tb3+在SrZnP2O7材料中的能量传递过程,发现,Ce3+对Tb3+具有很强的敏化作用,提高了SrZnP2O7∶Tb3+材料的发射强度,当Ce3+摩尔分数为3%时,SrZnP2O7∶Tb3+材料的发射强度提高了近2倍。引入电荷补偿剂可提高SrZnP2O7∶Tb3+材料的发射强度,其中以掺入Li+和Cl-时效果最明显。  相似文献   

17.
采用金属醇盐法制备MgAl2O4前驱体,通过高温煅烧2~4 h得到纯相MgAl2O4粉体,再将其与YAG∶Ce荧光粉均匀混合,利用热压烧结并结合热等静压处理得到MgAl2O4/Ce∶YAG透明陶瓷。利用X射线衍射、紫外-可见分光光度计等测试手段对样品进行表征。样品由MgAl2O4和YAG两相组成,在340 nm和475 nm有两个激发峰。发射光谱在533 nm有一宽峰,属于Ce3+的5d→4f特征跃迁发射。该透明陶瓷封装蓝光芯片所得白光LED器件在35 mA驱动下的发光效率为133.47 lm.W-1,其寿命及色温稳定性优于采用传统方式封装的白光LED。实验结果表明MgAl2O4/Ce∶YAG透明陶瓷是一种可用于白光LED的新型荧光材料。  相似文献   

18.
(La,Ce,Tb)(PO4,BO3)的光谱特性研究   总被引:3,自引:2,他引:1  
本文合成制备了(La,Ce,Tb)(PO4,BO3)(Gp)绿色发光材料,比较了CeMgAl11O19:Tb(GA1)和Gp在室温下的发光、激发光谱的差异,Gp的5D4-7F5跃迁谱线的半宽度及相对强度均小于GA1,而5D4-7F3、5D4-7F3跃迁谱线的相对强度则大于GA1.激发光谱的差异主要是Gp的激发带强度高于GA1,自310nm后明显升高,在313nm处的强度比GA1提高近3倍,在351、369、377nm处的强度也比GA1分别提高近2.3-3.3倍,分析井讨论了Gp和GA1在发光、激发光谱上的差异对材料发光性能的影响.发光光谱的差异引起Gp发光色坐标的x值比GA1大,而y值变小.激发光谱的差异使得Gp在254nm激发下的发光亮度高于GA1,在313、365nm激发下的发光亮度则明显高于GA1.本文还讨论发La、Ce比对Gp发光性能的影响,只有在Ce的含量为0情况下,Gp的发光性能才显著变化.  相似文献   

19.
采用凝胶法分别制备出4.5ZnO-5.5Al2 O3-90SiO2 (ZAS)以及ZAS∶ RE3+(RE=Eu,Tb,Ce)透明微晶玻璃.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光光谱仪(PL)等测试手段,研究了稀土离子掺杂浓度对ZAS微晶玻璃的结构和发光性能的影响.XRD结果表明,ZAS∶ RE3+(RE=Eu,Tb,Ce)微晶玻璃包含ZnAl2 O4晶相和SiO2非晶相,ZnAl2 O4平均晶粒尺寸约为30 nm,稀土离子的掺杂没有显著改变原来的ZnAl2O4晶体结构.TEM结果表明,900℃时ZnAl2O4从ZAS体系中析出.PL光谱显示,Eu3+存在5 D0→7F2跃迁,ZAS∶Eu3+在611 nm处发出强烈的红色光;由于Tb3+的5D4→7E跃迁,ZAS∶ Tb3+在541 nm处发出明亮的绿色光;ZAS∶ Ce3+在381 nm处显示了蓝光发射,对应于Ce3的5d→4f轨道跃迁.ZAS∶RE3+(RE =Eu,Tb,Ce)的PL发射光谱存在着浓度猝灭现象,Eu3+、Tb3+和Ce3+的最佳单掺杂摩尔分数分别为20%、20%和3%.CIE色度图表明,ZAS∶ RE3+(RE=Eu,Tb,Ce)的色坐标分别位于红光、绿光和蓝光区域.实验结果表明,ZAS∶RE3+(RE=Eu,Tb,Ce)微晶玻璃是一种良好的可用于全色显示的白光LED材料.  相似文献   

20.
掺Ce3+、Tb3+的M3Y2(BO3)4(M=Ca,Sr)   总被引:6,自引:1,他引:5  
洪广言  岳青峰 《发光学报》1994,15(2):94-101
采用固相反应的方法;经二次灼烧合成了掺Ce3+、Tb3+的Ca3Y2(BO3)4和Sr3Y2(BO3)4磷光体;分析了合成过程中铈的还原情况.用X-射线衍射分析确定了它们的结构均为正交晶系,空间群P21cn测定了Ce3+和Tb3+在两种基质中的光谱,得到Ce3+波长位移的某些规律,观察到Ce3+对Tb3+的敏化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号