首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 147 毫秒
1.
微腔的谐振腔长度直接影响微腔有机电致发光器件(MOLED)的发光特性,根据微腔器件的相关计算公式运用传输矩阵法,分别对微腔长度L=λ/2和L=λ(λ:中心波长)时,在微腔内不同位置激子复合发光的电致发光谱(EL)进行模拟计算和比较。发现:微腔长度为L=λ/2时,峰值均为520nm,半峰全宽均为17nm,激子处在微腔的中心位置时,峰值强度和积分强度均为最大。L=λ时,激子在腔内不同位置时,峰值均为520nm,半峰全宽均12nm,在腔的中心区域时,与L=λ/2时正好相反,峰值强度和积分强度最小。分析后判断是因为两种长度的微腔内电场强度分布不同,激子位于腔内电场的最大值处发光性能最好。说明要制作出高效率的MOLED,要区别不同谐振腔长度,并使激子处于腔内电场最大处。  相似文献   

2.
设计中心波长为520nm,改变有机层厚度,即空穴传输层NPB和发光层Alq3的厚度,分别由10nm逐渐增加至100nm,器件的总体厚度也随着改变,分别计算模拟出有机电致发光器件(OLED)和微腔有机电致发光器件(MOLED)的电致发光谱(EL),并对光谱的积分强度、峰值强度、半峰全宽、峰值位置的三维分布图进行比较分析。综合考虑光谱的峰值位置(中心波长)、最大的峰值强度和积分强度(与亮度、效率相关)、最小半峰全宽(色纯度高)进行合理的设计,可以找到最佳厚度。发现:NPB和Alq3的厚度分别为70和62nm时,器件性能最佳,并且微腔器件的结果尤为明显。结果表明,通过模拟计算,可以深入探索MOLED和OLED发光特性,设计出合理的器件结构。  相似文献   

3.
采用传输矩阵法对有机电致发光器件(OLED)、微腔有机电致发光器件(MOLED)和耦合微腔有机电致发光器件(CMC)的电致发光光谱(EL)进行了模拟计算。OLED、MOLED和CMC的结构分别为glass/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al、glass/DBR/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al和glass/DBR_1/filler/DBR_2/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al。通过模拟计算发现:OLED光谱呈宽带发射,主峰峰值位于561 nm,肩峰峰值位于495 nm;MOLED光谱呈单峰窄带发射,峰值位于534 nm;CMC光谱呈双峰窄带发射,峰值分别位于520 nm和556 nm。MOLED光谱的色纯度最高;OLED与MOLED的光谱积分面积基本相同;CMC的光谱积分面积是OLED或MOLED的1.1倍,发光效率最高。结果表明,采用双耦合微腔结构可有效提高OLED的发光效率,改善发光的色纯度。  相似文献   

4.
张春玉  王庆凯  秦莉  荣华 《发光学报》2015,36(4):454-458
为了分析微腔有机电致发光器件(MOLED)发光的角度依赖性,根据微腔计算公式,采用传输矩阵法进行了模拟计算,并进行了实验验证。所设计器件的结构为Glass/DBR/ITO(58 nm)/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm )/Al(150 nm)。由实验得到的电致发光(EL)谱可以观察到:随着探测角度的加大,发光峰蓝移、强度减小。与模拟得出的不同观测角度下的反射谱进行比较,发现透射峰值与EL峰值相对应。模拟分析发现,这是由于观测角不同,微腔两个反射镜的S和P偏振的反射率及反射相移不同,同时腔内光学厚度发生变化,即微腔长度变化共同作用所导致。  相似文献   

5.
使用典型绿色磷光材料Ir(ppy)3作为发光层,DBR和金属Al作为微腔的一对反射镜,制备了结构为Glass/DBR/ITO/Mo O3(1 nm)/Tc Ta(40 nm)/CBP:Ir(ppy)3(40 nm,6%)/TPBI(47 nm)/Li F(1 nm)/Al(80 nm)的绿色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比OLED器件,研究微腔结构对器件发光性能的影响。发现OLED的电致发光谱(EL)的峰值是510 nm,半峰全宽(FWHM)为70 nm,MOLED的峰值是514 nm,FWHM为35 nm,比OLED窄化了1/2,MOLED的最大亮度、最大电流效率分别为143000 cd/m2和64.4 cd/A,OLED的最大亮度、最大电流效率分别为103000 cd/m2和41.6 cd/A;测试并计算了器件的外量子效率(EQE),MOLED和OLED的最大EQE分别为18.6%和14.3%。结果表明,微腔器件发光性能比无腔器件得到了很大的改善。  相似文献   

6.
蓝色微腔有机发光器件   总被引:4,自引:0,他引:4  
实现彩色显示需要高效率和高色纯度的红、绿、蓝三种颜色发光.与红、绿色器件相比,蓝光有机电致发光器件(OLED)有较低效率和较差的色纯度.为了改善器件性能,将微腔引入到OLED中,优化设计并制作出蓝色微腔有机电致发光器件(MOLED):Glass/DBR/ITO/NPB/DPVBi/Alq3/LiF/Al.得到蓝光微腔器件电致发光谱(EL)峰值位于472 nm,与无腔器件相比,峰值强度增强5.4倍,半峰全宽(FWHM)减小77.1%(仅为16 nm),光谱积分强度增加33%.微腔器件最大亮度8439 cd/m2,最大发光效率2.4 cd/A,CIE色坐标为(X=0.14,Y=0.10).结果表明,由于微腔效应的存在,导致微腔器件的EL谱线窄化和峰值强度增强,可提高器件的色纯度,改善器件发光性能.  相似文献   

7.
微腔有机电致发光器件的谐振腔反射镜性能   总被引:3,自引:2,他引:1       下载免费PDF全文
根据微腔原理运用传输矩阵法对构成微腔有机电致发光器件(MOLED)谐振腔的两个反射镜进行模拟计算并比较,可观察到:随金属反射镜的反射率增大,微腔器件的电致发光(PL)谱的半峰全宽(FWHM)逐渐窄化;峰值逐渐蓝移至设计的谐振峰值520nm处;峰值强度和光谱积分强度逐渐增强。结果表明:金属反射镜反射率越大越好。随DBR反射镜的周期数从1增加到9,EL的峰值均为520nm,半峰全宽逐渐窄化,积分强度逐渐减弱;峰值强度由弱增强再减弱,4个周期时峰值强度最大,所以设计微腔器件时,DBR的周期是一项很重要的参数。DBR反射率太大不利于出光,太小微腔效应小。需要根据制作目的和需要进行合理选择。  相似文献   

8.
红色磷光微腔有机电致发光器件的发光性能   总被引:1,自引:0,他引:1  
张春玉  秦莉  王洪杰 《发光学报》2014,(12):1464-1468
制备了结构为G/DBR/ITO/Mo O3(1 nm)/Tc Ta(55 nm)/CBP∶Ir(piq)2acac(44 nm,6%)/TPBI(55nm)/Li F(1 nm)/Al(80 nm)的红色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比器件OLED,研究微腔结构对磷光器件发光性能的影响。研究发现,OLED的电致发光(EL)峰值为626 nm,半高全宽(FWHM)为92 nm;MOLED的发光峰值为628 nm,FWHM为42 nm,窄化了1/2。MOLED的最大亮度、最大电流效率、最大外量子效率(EQE)分别为121 000 cd/m2、27.8 cd/A和28.4%,OLED的最大亮度、最大电流效率、最大EQE分别为54 500 cd/m2、13.1 cd/A和16.6%。结果表明,微腔器件的发光性能与无腔器件相比得到了较大幅度的提升。  相似文献   

9.
设计并制作了三个不同厚度的红色有机微腔电致发光器件,器件结构是:Glass/DBR/ITO(厚度分别为150,182,196nm)/NPB(82nm)/DCM-Alq3(71nm)/Mg-Ag(70nm)。实验结果表明,随着氧化铟锡(ITO)的厚度增加,导致整个微腔器件的腔长度增加,器件的谐振模式(发光峰值)改变,由604nm红移到640nm最后到656nm。CIE色坐标由(0.52,0.48)变至(0.61,0.37)至(0.61,0.38),色纯度逐渐提高。性能较好的是ITO厚度为150nm的微腔器件,中心波长位于604nm处,最大亮度达到32008cd/m2,最大电流效率为3.15cd/A。这表明ITO厚度对微腔有机电致发光器件的发光性能有着很大影响。  相似文献   

10.
微腔有机电致发光器件的角度依赖性   总被引:1,自引:1,他引:0       下载免费PDF全文
设计并制作了两个器件,一个是微腔有机电致发光器件(MOLED):G/DBR/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm);一个是无腔器件(OLED):G/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm)。测试并分析了器件性能。OLED在电流密度30 mA/cm2时的电致发光(EL)光谱随观测角度由0°~70°都是一宽谱带,是发光层DPVBi的特征发光谱,峰值都在452 nm处,半峰全宽均为70 nm,色坐标均为(x=0.18,y=0.19),无腔器件没有角度依赖性。相同电流密度下,微腔器件的EL谱随观测角度由0°~70°,发光峰值蓝移,由472 nm逐渐移至428 nm;峰值相对强度渐弱,由0.32变至0.02;半峰全宽由14 nm增加至120 nm;色坐标由(x=0.14,y=0.10)变至(x=0.19,y=0.25),颜色由紫蓝变成蓝白到接近白色。微腔器件具有明显的角度依赖性。  相似文献   

11.
微腔有机电致发光白光器件设计及制作   总被引:6,自引:1,他引:5       下载免费PDF全文
用一种宽谱带材料Alq3作为发光层,设计并制作白色有机微腔电致发光器件。器件结构:Glass/DBR/ITO(194 nm)/NPB(93 nm) /Alq3(49 nm)/MgAg(150 nm),得到了位于蓝(488 nm)和红(612 nm)光区域的两个腔发射模式,并通过颜色匹配获得了白光。器件的最大电致发光亮度16 435 cd/m2,最大效率11.1 cd/A,典型亮度值100 cd/m2时的发光效率、电压、电流密度分别是9 cd/A,6 V和1.2 mA/cm2,CIE 色坐标为(0.32, 0.34)。在不同的驱动电压下,器件的发光颜色稳定,说明了微腔是一种制作白光OLED的有效结构。  相似文献   

12.
A novel designed method for tunable wavelength microcavity organic electroluminescent diode (MOLED) based on the birefringence of liquid crystal was presented. By modulated the refractive index of liquid crystal, the device could radiate with different wavelength continuously. The simulated result showed that the tunable range could reach to 60 nm and the full width of half maximum is 5.5 nm. The device could be applied to wavelength converter and tunable light source.  相似文献   

13.
We present a detailed analysis and computations of the emitted radiation spectrum for quantum dots (QDs) microcavity light-emitting device, where the total physical thickness of the cavity spacer was kept at 254 nm which corresponds to the wavelength of the mode number (m) = 1 resonant mode of the cavity. Our calculation gives good results for QD diameter only from 1.2 to 6.4 nm. The computations are used to examine how the emitted radiation spectrum can be optimized by varying the position of the light-emitting layer, the type of cathode material, the choice of hole transport layer material, and the thickness of electron transport layer, QD layer, and hole transport layer. These studies showed that the variation of layers geometry and the position of the light-emitting layer will optimize the output intensity and the radiation spectrum and varying the ETL and QD layer thickness will have a more effect on the emitted spectrum than varying HTL thickness. In addition, we have examined the effect of using different quantum dots sizes in emission layer. On the other hand, we have investigated the difference between the electroluminescence (EL) emissions for microcavity device in comparison with the non-cavity device, and we have found that the full width at half maximum (FWHM) of the EL is reduced from 45 nm for the QD non-cavity LED to 30 nm for the output of a resonant microcavity device. Finally, we have investigated the compatibility between our calculation and the experimental results and found a fairly good agreement between them.  相似文献   

14.
采用普通的Alq:DCM红光发光材料体系,制作了结构为Glass/DBR/ITO/NPB/Alq:DCM/MgAg的有机红光微腔发光器件,实现了纯红光发射,器件发射峰位于600 nm.与无腔器件相比,微腔器件光谱半峰全宽(FWHM)从92 nm压缩为32 nm,色度从X=0.58,Y=0.41改善为X=0.6,Y=0.4,微腔器件的最大发光效率为3.1 cd/A,最大亮度为32 010 cd/m2.  相似文献   

15.
新型MOLEDs的光学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
将负折射率介质层(NRIDL)引入到微腔有机电致发光器件(MOLEDs)中,设计了新型的微腔器件。利用传输矩阵法对此器件的反射率大小、器件厚度对发射峰的影响以及电致发光(EL)光谱性质进行了分析和讨论。结果表明:与普通微腔器件相比,新型微腔器件的谱线宽度显著窄化,峰值强度明显增强,并且受腔体长度的影响较小。这些结果为进一步提高微腔器件的发光色纯度、薄化器件厚度提供了新方法。  相似文献   

16.
有机微腔绿色发光二极管   总被引:4,自引:2,他引:2  
光学微腔是指尺寸在光波长量级的光学微型谐振腔。微腔结构可以使腔内物质和光场的相互作用与体材料相比发生很大变化,出现了自发辐射谱线窄化和增强等腔效应。利用这些腔效应,可以改善有机发光器件的性能。采用微腔结构,优化设计并研制了有机微腔绿色发光二极管,器件结构为Glass/DBR/ITO/NPB/Alq∶Rubrene/Alq/MgAg,获得了最大亮度40100 cd/m2、最大发光效率为6.44 cd/A、半峰全宽为28 nm的纯绿色有机微腔电致发光器件。而与之比较的无腔器件最大亮度为22580 cd/m2、最大发光效率为2.98 cd/A、半峰全宽为120 nm。相同电流密度下微腔电致发光谱的峰值发射强度是无腔器件的4.2倍。结果表明将微腔结构引入有机电致发光器件中,不但改善了发光的色纯度,而且使器件的发光效率和亮度都得到明显增强。  相似文献   

17.
一种新型有机电致微腔结构的双模发射   总被引:4,自引:4,他引:0  
采用结构Glass/DBR/ITO/NPB/NPB:Alq/Alq/Al制作了有机微腔电致发光器件。将空穴传输材料与发光材料以一定比例混合作为发光层,为了便于对比,在不改变有机层的膜厚的情况下同时制作了传统的异质结微腔器件,发现两种器件的发光光谱有很大不同,器件的复合效率与传统的异质结器件相比也得到了很大提高,这是因为将两种有机材料混合能消除界面势垒,提高器件的复合效率,从而提高了器件的发光性能,实现了微腔双模发射,且两个模式的半峰全宽分别为8nm和12nm。通过进一步优化器件结构可以实现微腔白光发射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号