首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
采用传输矩阵法对有机电致发光器件(OLED)、微腔有机电致发光器件(MOLED)和耦合微腔有机电致发光器件(CMC)的电致发光光谱(EL)进行了模拟计算。OLED、MOLED和CMC的结构分别为glass/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al、glass/DBR/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al和glass/DBR_1/filler/DBR_2/ITO(134 nm)/NPB(74 nm)/Alq_3(62 nm)/Al。通过模拟计算发现:OLED光谱呈宽带发射,主峰峰值位于561 nm,肩峰峰值位于495 nm;MOLED光谱呈单峰窄带发射,峰值位于534 nm;CMC光谱呈双峰窄带发射,峰值分别位于520 nm和556 nm。MOLED光谱的色纯度最高;OLED与MOLED的光谱积分面积基本相同;CMC的光谱积分面积是OLED或MOLED的1.1倍,发光效率最高。结果表明,采用双耦合微腔结构可有效提高OLED的发光效率,改善发光的色纯度。  相似文献   

2.
有机微腔绿色发光二极管   总被引:4,自引:2,他引:2  
光学微腔是指尺寸在光波长量级的光学微型谐振腔。微腔结构可以使腔内物质和光场的相互作用与体材料相比发生很大变化,出现了自发辐射谱线窄化和增强等腔效应。利用这些腔效应,可以改善有机发光器件的性能。采用微腔结构,优化设计并研制了有机微腔绿色发光二极管,器件结构为Glass/DBR/ITO/NPB/Alq∶Rubrene/Alq/MgAg,获得了最大亮度40100 cd/m2、最大发光效率为6.44 cd/A、半峰全宽为28 nm的纯绿色有机微腔电致发光器件。而与之比较的无腔器件最大亮度为22580 cd/m2、最大发光效率为2.98 cd/A、半峰全宽为120 nm。相同电流密度下微腔电致发光谱的峰值发射强度是无腔器件的4.2倍。结果表明将微腔结构引入有机电致发光器件中,不但改善了发光的色纯度,而且使器件的发光效率和亮度都得到明显增强。  相似文献   

3.
设计中心波长为520nm,改变有机层厚度,即空穴传输层NPB和发光层Alq3的厚度,分别由10nm逐渐增加至100nm,器件的总体厚度也随着改变,分别计算模拟出有机电致发光器件(OLED)和微腔有机电致发光器件(MOLED)的电致发光谱(EL),并对光谱的积分强度、峰值强度、半峰全宽、峰值位置的三维分布图进行比较分析。综合考虑光谱的峰值位置(中心波长)、最大的峰值强度和积分强度(与亮度、效率相关)、最小半峰全宽(色纯度高)进行合理的设计,可以找到最佳厚度。发现:NPB和Alq3的厚度分别为70和62nm时,器件性能最佳,并且微腔器件的结果尤为明显。结果表明,通过模拟计算,可以深入探索MOLED和OLED发光特性,设计出合理的器件结构。  相似文献   

4.
使用典型绿色磷光材料Ir(ppy)3作为发光层,DBR和金属Al作为微腔的一对反射镜,制备了结构为Glass/DBR/ITO/Mo O3(1 nm)/Tc Ta(40 nm)/CBP:Ir(ppy)3(40 nm,6%)/TPBI(47 nm)/Li F(1 nm)/Al(80 nm)的绿色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比OLED器件,研究微腔结构对器件发光性能的影响。发现OLED的电致发光谱(EL)的峰值是510 nm,半峰全宽(FWHM)为70 nm,MOLED的峰值是514 nm,FWHM为35 nm,比OLED窄化了1/2,MOLED的最大亮度、最大电流效率分别为143000 cd/m2和64.4 cd/A,OLED的最大亮度、最大电流效率分别为103000 cd/m2和41.6 cd/A;测试并计算了器件的外量子效率(EQE),MOLED和OLED的最大EQE分别为18.6%和14.3%。结果表明,微腔器件发光性能比无腔器件得到了很大的改善。  相似文献   

5.
红色磷光微腔有机电致发光器件的发光性能   总被引:1,自引:0,他引:1  
张春玉  秦莉  王洪杰 《发光学报》2014,(12):1464-1468
制备了结构为G/DBR/ITO/Mo O3(1 nm)/Tc Ta(55 nm)/CBP∶Ir(piq)2acac(44 nm,6%)/TPBI(55nm)/Li F(1 nm)/Al(80 nm)的红色磷光微腔有机电致发光器件(MOLED),同时制作了无腔对比器件OLED,研究微腔结构对磷光器件发光性能的影响。研究发现,OLED的电致发光(EL)峰值为626 nm,半高全宽(FWHM)为92 nm;MOLED的发光峰值为628 nm,FWHM为42 nm,窄化了1/2。MOLED的最大亮度、最大电流效率、最大外量子效率(EQE)分别为121 000 cd/m2、27.8 cd/A和28.4%,OLED的最大亮度、最大电流效率、最大EQE分别为54 500 cd/m2、13.1 cd/A和16.6%。结果表明,微腔器件的发光性能与无腔器件相比得到了较大幅度的提升。  相似文献   

6.
微腔有机电致发光器件的角度依赖性   总被引:1,自引:1,他引:0       下载免费PDF全文
设计并制作了两个器件,一个是微腔有机电致发光器件(MOLED):G/DBR/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm);一个是无腔器件(OLED):G/ITO/NPB(46 nm)/DPVBi(20 nm)/Alq3(56 nm)/LiF(1 nm)/Al(150 nm)。测试并分析了器件性能。OLED在电流密度30 mA/cm2时的电致发光(EL)光谱随观测角度由0°~70°都是一宽谱带,是发光层DPVBi的特征发光谱,峰值都在452 nm处,半峰全宽均为70 nm,色坐标均为(x=0.18,y=0.19),无腔器件没有角度依赖性。相同电流密度下,微腔器件的EL谱随观测角度由0°~70°,发光峰值蓝移,由472 nm逐渐移至428 nm;峰值相对强度渐弱,由0.32变至0.02;半峰全宽由14 nm增加至120 nm;色坐标由(x=0.14,y=0.10)变至(x=0.19,y=0.25),颜色由紫蓝变成蓝白到接近白色。微腔器件具有明显的角度依赖性。  相似文献   

7.
设计并制作了三个不同厚度的红色有机微腔电致发光器件,器件结构是:Glass/DBR/ITO(厚度分别为150,182,196nm)/NPB(82nm)/DCM-Alq3(71nm)/Mg-Ag(70nm)。实验结果表明,随着氧化铟锡(ITO)的厚度增加,导致整个微腔器件的腔长度增加,器件的谐振模式(发光峰值)改变,由604nm红移到640nm最后到656nm。CIE色坐标由(0.52,0.48)变至(0.61,0.37)至(0.61,0.38),色纯度逐渐提高。性能较好的是ITO厚度为150nm的微腔器件,中心波长位于604nm处,最大亮度达到32008cd/m2,最大电流效率为3.15cd/A。这表明ITO厚度对微腔有机电致发光器件的发光性能有着很大影响。  相似文献   

8.
新型MOLEDs的光学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
将负折射率介质层(NRIDL)引入到微腔有机电致发光器件(MOLEDs)中,设计了新型的微腔器件。利用传输矩阵法对此器件的反射率大小、器件厚度对发射峰的影响以及电致发光(EL)光谱性质进行了分析和讨论。结果表明:与普通微腔器件相比,新型微腔器件的谱线宽度显著窄化,峰值强度明显增强,并且受腔体长度的影响较小。这些结果为进一步提高微腔器件的发光色纯度、薄化器件厚度提供了新方法。  相似文献   

9.
耦合微腔结构的有机电致发光器件   总被引:2,自引:2,他引:0       下载免费PDF全文
李颜涛  陈红  褚明辉  刘星元 《发光学报》2011,32(11):1186-1191
研究了耦合微腔结构的有机发光器件的光学和电致发光性能。通过将被动腔作为底部反射镜的方法,简化了耦合微腔的光学和发光性能的模拟,所得到的结果与实验符合得较好。在相同电流密度下与同样结构的普通OLED相比,耦合腔OLED的光谱强度在502 nm处增强了3.6倍,在550 nm处增强了5.6倍,光谱积分强度增加了0.5倍。普通OLED的最大电流效率和亮度是4.2 cd/A 和13 600 cd/m2。而耦合腔OLED则为7.0 cd/A 和 22 660 cd/m2。这种结构的器件出射光更集中于腔轴方向,有利于设计开发较高效率的有机激光器件。  相似文献   

10.
微腔有机电致发光白光器件设计及制作   总被引:6,自引:1,他引:5       下载免费PDF全文
用一种宽谱带材料Alq3作为发光层,设计并制作白色有机微腔电致发光器件。器件结构:Glass/DBR/ITO(194 nm)/NPB(93 nm) /Alq3(49 nm)/MgAg(150 nm),得到了位于蓝(488 nm)和红(612 nm)光区域的两个腔发射模式,并通过颜色匹配获得了白光。器件的最大电致发光亮度16 435 cd/m2,最大效率11.1 cd/A,典型亮度值100 cd/m2时的发光效率、电压、电流密度分别是9 cd/A,6 V和1.2 mA/cm2,CIE 色坐标为(0.32, 0.34)。在不同的驱动电压下,器件的发光颜色稳定,说明了微腔是一种制作白光OLED的有效结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号