首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
对流占优扩散问题的特征线法-差分法计算格式   总被引:6,自引:0,他引:6  
陆金甫 《计算物理》1989,6(4):486-494
本文用特征线目的和有限差分目的相结合的数值目的来求解对流问题和对流占优扩散问题,提出了两个计算格式,并给出了数值例子。  相似文献   

2.
求解对流占优Burgers方程的随流格式   总被引:8,自引:0,他引:8  
蒋锦良 《计算物理》1992,9(2):127-132
在用差分方法求解对流占优的Burgers方程时,许多常用的差分格式的计算精度会下降。为了提高对流占优问题的计算精度,本文提出非线性对流项的差分格式的设计要求,从而得到对流项的新的差分格式-随流格式。本文通过算例来表明随流格式的优点。  相似文献   

3.
提出了数值求解三维变系数对流扩散方程非等距网格上的四阶精度19点紧致差分格式,为了提高求解效率,采用多重网格方法求解高精度格式所形成的大型代数方程组。数值实验结果表明本文方法对于不同的网格雷诺数问题,在精确性、稳定性和减少计算工作量方面均明显优于7点中心差分格式。  相似文献   

4.
求解Navier-Stokes方程组的组合紧致迎风格式   总被引:1,自引:0,他引:1  
梁贤  田振夫 《计算物理》2008,25(6):659-667
给出一种新的至少有四阶精度的组合紧致迎风(CCU)格式,该格式有较高的逼近解率,利用该组合迎风格式,提出一种新的适合于在交错网格系统下求解Navier-Stokes方程组的高精度紧致差分投影算法.用组合紧致迎风格式离散对流项,粘性项、压力梯度项以及压力Poisson方程均采用四阶对称型紧致差分格式逼近,算法的整体精度不低于四阶.通过对Taylor涡列、对流占优扩散问题和双周期双剪切层流动问题的计算表明,该算法适合于对复杂流体流动问题的数值模拟.  相似文献   

5.
半导体瞬态问题计算方法的新进展   总被引:2,自引:1,他引:1  
袁益让 《计算物理》2009,26(3):317-324
综述三维热传导型半导体瞬态问题计算方法的新进展.数学模型是一类由四个方程组成的非线性耦合对流-扩散偏微分方程组的初边值问题.重点研究特征分数步差分方法,修正迎风分数步差分方法,特征交替方向变网格有限元方法,区域分裂及并行计算.  相似文献   

6.
求解对流扩散方程的四种差分格式的比较   总被引:9,自引:0,他引:9       下载免费PDF全文
何文平  封国林  董文杰  李建平 《物理学报》2004,53(10):3258-3264
利用对流扩散方程,在边界和参数存在随机扰动的情况下,考察四种差分格式的优劣,为求 解对流扩散方程提供一种可靠的差分格式,并得到通过空间加密网格的方法可以控制边界、 参数随机影响的结论. 关键词: 对流扩散方程 差分格式 随机扰动  相似文献   

7.
余华平  王双虎 《计算物理》2007,24(6):631-636
在Voronoi网格上利用一种基于回路积分法的有限体积法构造扩散方程的的差分格式.在这种特殊的网格上离散扩散方程比通常在四边形网格上离散的格式要简单,不会引进角点未知量,提高了对网格边上的流的离散精度,及差分格式整体精度.这种Voronoi网格上的扩散计算也可以与单元中心流体力学计算耦合.数值算例表明这种格式比四边形网格上的格式精度高,且能更好的应对网格扭曲情形.  相似文献   

8.
边界条件对对流扩散方程数值稳定性的影响   总被引:2,自引:0,他引:2  
本文利用数值计算方法对采用均分网格的一维线性无源的对流-扩散方程在各种边界条件下的稳定性进行了分析,燕求出了不同边界条件下一维问题的中心差分和QUICK格式的临界网格Peclet数。指出按现有方法得出的临界网格Peclet数是判别差分格式对流数值稳定性的最苛刻的要求。对中心差分和QUICK格式,除两点边值问题以外的其它边界条件下的稳定性范围均不小于或远远大于两点边值问题的稳定性范围。通过计算还得出了格式的数值稳定性主要取决于计算区域下游侧的边界条件类型而与计算区域上游侧的边界条件类型无关的结论。  相似文献   

9.
基于中心差分的对流扩散方程四阶紧凑格式   总被引:6,自引:0,他引:6  
陈国谦  陈矛章 《计算物理》1994,11(4):413-424
在经典中心差分格式的基础上,提出对流扩散方程的四阶紧凑差分格式。具体方法是,先就一维情形,将中心差分格式改造为不受网格Reynolds数限制的恒稳二阶格式,再在不增加相关网格点的前提下,通过格式中对流系数和源项的摄动处理,使稳格式的精度提高至四阶。本文并作一、二、三维流动模型方程及高Rayleigh数自然对流传热问题的数值求解,例示本文格式的优良性态。  相似文献   

10.
讨论非线性分数阶对流扩散方程的特征有限元方法.利用特征线法和分数阶有限元框架,构建一种基于特征方向的全离散有限元格式.模拟物理问题,并在数值上与常规有限元格式进行比较,计算结果表明:该方法能准确地捕捉到控制方程的精确解,即使是在对流效应占优时,也具有稳定性好和逼近精度高等特征.  相似文献   

11.
We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffusion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and efficiency of the ELLAM approach for convection-dominated problems.  相似文献   

12.
We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffusion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and efficiency of the ELLAM approach for convection-dominated problems.  相似文献   

13.
计算石油地质等领域的一些新进展   总被引:3,自引:0,他引:3  
袁益让 《计算物理》2003,20(4):283-290
主要综述应用计算数学、渗流力学的数值方法和理论研究油田勘探开发中的数值模拟、核废料污染问题的数值方法、海水入侵的预测和防治,半导体瞬态问题的数值模拟.问题的数学模型是一类非线性耦合对流 扩散偏微分方程组的初边值问题.重点讨论特征差分方法、特征有限元法、分数步数值方法及其理论分析.  相似文献   

14.
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction–diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinates, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction–diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.  相似文献   

15.
The present study considers the performance of tabulation methods for numerical simulation of complex chemical kinetics in laminar combusting flows and compares their predictions to results obtained by direct calculation. Two tabulation methods are considered: the Flame Prolongation of Intrinsic low-dimensional manifold (FPI) method and Steady Laminar Flamelet Model (SLFM). The FPI method is of current interest as it is a potentially unifying approach capable of dealing with both premixed and non-premixed flames for gaseous fuels. SLFM tabulation methods are popular for non-premixed flames and form a good basis for comparing the performance of the FPI approach. The performance of each method is also evaluated by comparing the results to the direct simulation of the laminar flames using two chemical kinetic schemes: simplified chemistry involving five species and one reaction and detailed chemistry involving 53 species and 325 reaction steps. As part of the evaluation process, the computational cost of each method is also assessed. The laminar flames considered in this study include: freely propagating laminar premixed flames, a two-dimensional axisymmetric methane–air opposed-jet diffusion flame, and a two-dimensional axisymmetric methane–air co-flow diffusion flame. Both tabulation methods are implemented in a parallel adaptive mesh refinement (AMR) framework for solving the complete set of governing partial differential equations. These equations are solved using a fully-coupled finite-volume formulation on body-fitted multi-block quadrilateral mesh. Significant improvements in terms of reduced computational requirements, as measured by both storage and processing time, are demonstrated for the tabulated methods.  相似文献   

16.
In this paper, an improved two-level method is presented for effectively solving the incompressible Navier–Stokes equations. This proposed method solves a smaller system of nonlinear Navier–Stokes equations on the coarse mesh and needs to solve the Oseen-type linearized equations of motion only once on the fine mesh level. Within the proposed two-level framework, a prolongation operator, which is required to linearize the convective terms at the fine mesh level using the convergent Navier–Stokes solutions computed at the coarse mesh level, is rigorously derived to increase the prediction accuracy. This indispensable prolongation operator can properly communicate the flow velocities between the two mesh levels because it is locally analytic. Solution convergence can therefore be accelerated. For the sake of numerical accuracy, momentum equations are discretized by employing the general solution for the two-dimensional convection–diffusion–reaction model equation. The convective instability problem can be simultaneously eliminated thanks to the proper treatment of convective terms. The converged solution is, thus, very high in accuracy as well as in yielding a quadratic spatial rate of convergence. For the sake of programming simplicity and computational efficiency, pressure gradient terms are rigorously discretized within the explicit framework in the non-staggered grid system. The proposed analytical prolongation operator for the mapping of solutions from the coarse to fine meshes and the explicit pressure gradient discretization scheme, which accommodates the dispersion-relation-preserving property, have been both rigorously justified from the predicted Navier–Stokes solutions.  相似文献   

17.
徐金景  袁光伟 《计算物理》2021,38(2):153-164
多流管方法是二维多介质辐射流体力学数值模拟中一类常用的求解方法,它采用Lagrange-Euler混合型四边形网格,称为多流管网格。通常其网格品质高于一般的四边形网格。在这类网格上,可以利用网格特性对九点扩散格式中的节点插值方法进行改进。本文利用调和平均点和梯度离散构造的方法提出几种节点插值方法。并给出数值实验,说明现有应用程序中的节点插值方法损失精度,而新的节点插值方法能够使得九点格式在多流管网格上具有二阶精度。  相似文献   

18.
This paper presents a new resolution strategy for multi-scale streamer discharge simulations based on a second order time adaptive integration and space adaptive multiresolution. A classical fluid model is used to describe plasma discharges, considering drift–diffusion equations and the computation of electric field. The proposed numerical method provides a time-space accuracy control of the solution, and thus, an effective accurate resolution independent of the fastest physical time scale. An important improvement of the computational efficiency is achieved whenever the required time steps go beyond standard stability constraints associated with mesh size or source time scales for the resolution of the drift–diffusion equations, whereas the stability constraint related to the dielectric relaxation time scale is respected but with a second order precision. Numerical illustrations show that the strategy can be efficiently applied to simulate the propagation of highly nonlinear ionizing waves as streamer discharges, as well as highly multi-scale nanosecond repetitively pulsed discharges, describing consistently a broad spectrum of space and time scales as well as different physical scenarios for consecutive discharge/post-discharge phases, out of reach of standard non-adaptive methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号