首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了提高电子器件的冷却效率,研究了不导电介质FC-72在表面加工有方柱微结构的模拟芯片上的流动沸腾强化换热性能.采用了两种方柱微结构,其边长均为30μm,但高度分别为60μm和120 μm.方柱微结构芯片与光滑芯片相比显示出较好的强化沸腾换热效果,且增加方柱高度可有效提高流动沸腾强化换热性能.方柱微结构芯片的临界热流密度随着流速和过冷度的增大而增大,且到达临界热流密度(CHF)时芯片的表面温度低于芯片回路正常工作的上限温度85℃.  相似文献   

2.
多孔表面在强化沸腾领域有重要应用。本文制备了系列孔径相近但厚度不同的铜基微纳双尺度多孔表面,这些样品表面上都有一系列直径约为130μm的微孔,而孔壁上则是纳米(亚微米)孔隙。以纯水为工质的池沸腾实验显示,当热流密度较低时,存在最优厚度使得沸腾换热性能最佳;样品CHF随着厚度增加而增加。双尺度多孔表面有着区别于一般的多孔表面的重要特性,当壁面过热度较低时,只有大孔可以形成活化中心;但当壁面过热度到达一定温度后,其孔壁上的纳米尺度(亚微米)尺度结构形成大量的活化中心,其壁面过热度几乎不再随着热流密度的上升而上升。随着厚度的增加,其壁面可以形成的活化穴直径在减小,造成活化所需要的壁面过热度升高。  相似文献   

3.
喷淋高度对氨喷雾相变冷却特性的影响   总被引:1,自引:0,他引:1  
喷雾相变冷却具有高热流密度的换热能力,本文通过建立喷雾相变冷却实验系统,以液氨为工质,使用单喷嘴,对冷却面为2.5 cm×1.2 cm的热沉进行了实验研究。结果表明:以氨为工质的喷雾相变冷却具有较高的换热能力;在热流密度达到400W/cm~2时,热沉表面的温度在15℃以下;在实验工况不变时,随喷嘴喷淋高度的降低,临界热流密度值(CHF)增大,最大换热系数可达95000 W/(m~2·K)。  相似文献   

4.
对电子芯片射流冲击强化沸腾换热进行了实验研究。通过干腐蚀技术在硅片表面加工出交错排列30μm×60μm,50μm×60μm,50μm×120μm,30μm×120μm(宽×高)的柱状微结构,硅片尺寸为10 mm×10 mm×0.5mm。实验工质为FC-72,喷射速度V_j分别为0.5,1和1.5 m·s~(-1),喷嘴数目分别为1,4和9,对应的喷嘴直径分别为3,1.5和1 mm,喷嘴出口到芯片表面的距离分别为3,6和9 mm。实验表明,交错排列柱状微结构的换热效果要好于光滑芯片,临界热流密度(CHF)随着喷射速度的增加而增加。在核态沸腾区的整个喷射速度区间内,S-PF30-120的传热系数和CHF都是最高的。同时,对不同的换热方式进行了比较,包括池沸腾,流动沸腾,射流冲击和流动-喷射复合式沸腾换热。  相似文献   

5.
在工况温度分别为6℃和10℃,对R134a在光管和三根双侧强化管(F38,F46,F56)外进行池沸腾换热试验研究。结果表明:两种工况下,R134a在光管外沸腾表面传热系数与Cooper公式计算值相对偏差均在±15%以内,R134a在强化管外沸腾表面传热系数变化趋势与光管Cooper公式基本一致。受试验管外表面孔隙直径的影响,当热流密度小于50k W/m2(或壁面温差小于2K)时,孔隙直径越小,沸腾换热效果越好;反之,当热流密度大于50k W/m2(或壁面温差大于2K)时,孔隙直径大的强化表面沸腾换热效果要优于小孔隙直径表面。  相似文献   

6.
表面活性剂对池沸腾换热的影响   总被引:1,自引:0,他引:1  
本文以SDS(十二烷基硫酸钠)为表面活性剂,研究了在不同过冷度下SDS浓度对池沸腾换热的影响.结果表明在低SDS浓度下,沸腾换热在一定热流密度范围内得到显著强化.在不同过冷度下.均存在相应的最佳SDS浓度值,最大换热系数可达纯水的2~4倍.在饱和沸腾状态下,临界热流密度(CHF)随SDS浓度的增加而减小,沸腾曲线呈现三类分歧,且存在"S"型沸腾曲线及较明显的沸腾滞后现象.  相似文献   

7.
在热流密度3.54 W·cm~(-2)到40.7 W·cm~(-2),雷诺数由278到6502,出口干度0到1的工况范围内对R134a在微尺度单通道和多通道内流动沸腾压降特性进行了可视化实验研究。在相同工况时,单通道压降小于多通道压降;随热流密度和出口干度的增加,多通道压降增长范围小于单通道压降增长范围,通过可视观察,多通道内流动沸腾不稳定流动现象较单通道更为明显,并且多通道平均压降和实时压降波动范围更大。结合可视实验观察,多通道内压降高于单通道压降的主要原因为不稳定流动现象造成,并对产生不稳定流动的因素和造成压降升高的原因进行了分析。  相似文献   

8.
本文探究了内径3 mm水平光管内氨(R717)的沸腾两相流换热特性以及环状流的干涸特性.实验工况:饱和温度-10~10℃,热流密度10~30 kW/m2,质量流率40~200 kg/(m2·s),干度0.1~1.实验结果表明,质量流率、饱和温度及热流密度的增加都会强化沸腾换热.增加质量流率会强化环状流内的对流沸腾;增大...  相似文献   

9.
本文利用微液层模型对过冷沸腾的临界热流密度(CHF)进行了理论预测。过冷沸腾的强化换热主要是通过单个气泡的形成和消失造成的对流换热强化而引起的。对等热流面,CHF在高过冷区趋近于常数;对等温面,CHF随过冷度的增加而增加。过冷度增加时,蒸发换热量减少,总热流密度主要由蒸发区外的导热引起。  相似文献   

10.
液氮中导线加热丝的沸腾传热特性研究   总被引:1,自引:0,他引:1  
本文以50μm的磷青铜丝作为加热丝和测温元件,采用控制热流密度的方式测量了0°-90°倾角下加热丝在液氮中的沸腾曲线,结果表明:核态沸腾在增加热流密度时存在滞后现象;Bromley公式能准确的预测出膜态沸腾换热曲线的斜率,Zuber模型和Kutateladze公式预测水平细加热丝的CHF误差在15%以内;对于Leidenfrost热流密度的预测,常温流体的计算模型并不适用;CHF随倾角的变化较大,且大于加热平面在相同倾角下的变化幅度。  相似文献   

11.
本实验研究了9种不同的柱–孔复合微结构表面在HFE-7100中的池沸腾性能。实验结果表明,柱–孔复合微结构表面核态沸腾起始点的壁面过热度均降至0 K左右,显著低于光滑表面(SS)与普通微柱表面(PF-30-60),其核态沸腾换热系数(HTC)相比于PF-30-60和SS显著增加,且HTC的增幅随着微孔数量的增加而增大。柱–孔复合微结构表面的汽泡主要产生于微柱顶部的微孔,因此在高热流密度下,微通道中的汽泡堵塞得以缓解,使其临界热流密度(CHF)高于PF-30-60和SS。表面的HTC随着微柱高度(H)的增大而提高,但CHF却随着H的提高出现先提高后保持不变的趋势,这说明对于这种表面而言,柱高的提高不一定可以有效提升CHF。  相似文献   

12.
本文以TiO2纳米管阵列修饰表面为沸腾传热界面,以去离子超纯水为沸腾工质,研究纳米管的管径尺寸对池沸腾效果的影响,以及在沸腾过程中材料表面润湿性能的变化对传热特性的影响。在实验设计的热流密度范围内,第一次沸腾会使样品表面的润湿性增加,并随着沸腾时间的增加而增加,最终趋于稳定;但在实验中并未观察到润湿性对沸腾传热效果有明显影响。总体来说,随着纳米管直径尺度渐大时,沸腾传热强化效果逐渐增大。  相似文献   

13.
高功率二极管激光器喷雾冷却实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过以液氨为制冷工质的开式喷雾冷却系统,在相同实验条件下研究了二极管激光器(DL)热沉喷雾表面分别为光滑表面、均匀密排微孔、深孔和多孔表面结构时的冷却效果,实验结果表明:在热流密度达到300W/cm2时,冷却表面温度均保持在28℃以内,适用于高热流密度下的DL热管理问题;喷雾表面均布微结构能显著强化喷雾冷却性能,当采用均匀密排多孔表面时,散热功率达511.5 W/cm2,对流传热系数为346 701.1W/(m2·℃),传热系数较光滑表面时提高了83.9%。  相似文献   

14.
实验研究了不同热流密度不同液膜流量下,R134a在垂直布置的七根水平强化管外的降膜蒸发传热特性。结果表明:相同热流密度下在液膜流量较小阶段,管外传热系数随着液膜流量增加而明显增加;随着液膜流量的进一步增大,管1~3的管外传热系数保持不变,管4~7的管外传热系数先增大后减小。同时发现,液膜流量为0.159 kg·m~(-1)·s~(-1)时,随着热流密度的增大所有管的传热性能先增大后减小,并且转折点出现在较小的热流密度下;液膜流量为0.29 kg·m~(-1)·s~(-1)时,管1性能一直增强,管2~4的传热系数随热流密度增大先增大后减小,管5~7的传热系数一直减小,并且管1~4转折点出现在较大热流密度下。  相似文献   

15.
本文实验研究了非共沸混合制冷剂R134a/R245fa(质量比为0.7/0.3)在长度为45 mm、65 mm的平行微通道内的流动沸腾特性。微通道由30个截面为0.5 mm×0.5 mm矩形微通道组成。得到了质量流速在542.22~995.56kg·m~(-2)·s~(-1)、热流密度在4.9~100.2 W·cm~(-2)时的流动沸腾传热系数,并对R134a/R245fa和R134a的换热系数进行对比,结果表明热流密度、质量流速、通道长度对换热系数均有影响。考虑R134a/R245fa相变时的附加传质阻力对换热的影响下,在纯工质关联式中引入混合物影响因子,得到了适用于本实验工况下R134a/R245fa的关联式。  相似文献   

16.
微结构表面上FC-72的强化沸腾换热研究   总被引:1,自引:1,他引:0  
针对电子器件的高效冷却问题,对表面加工有微结构的硅片上FC-72的池沸腾换热性能进行了实验研究。测试了四种表面微结构,采用化学蒸汽沉积法在芯片表面生成-SiO2薄层所形成的亚微米粗糙面(Chip CVD),采用溅射方法在芯片表面生成-SiO2薄层,然后再对SiO2层进行湿式腐蚀技术处理形成的亚微米粗糙面(Chip E),采用一系列微电子加工技术生成的微米级双重入口洞穴(Chip CAVITY)以及采用干式腐蚀方法生成的方柱微结构(Chip PF)。实验所得的沸腾曲线表明,所有微结构表面与光滑面(Chip S)相比都显示出较大的强化沸腾换热效果,临界热流密度按芯片 S、E、CVD、CAVITY和PF的顺序增大。对于芯片PF来说,随着壁面过热度的增加,热流量呈剧烈的增加趋势且临界热流密度时芯片的表面温度低于芯片回路正常工作的临界上限温度85℃,最大临界热流密度可达80 W/cm2。  相似文献   

17.
设计加工一种带有入口节流结构的铜基微通道换热器,理论分析其传热模型、实验测量微通道换热器内相变换热的传热特性和压力特性。结果表明:换热器内部的热传递过程为其主要换热模式;换热器表面温度随加热热流密度的增大而增大;微通道入口流速对表面温度影响较小;入口工质过冷度线性影响换热器的表面温度。热流密度在不同阶段对换热系数有不同影响,热流密度为360 W/cm~2时,换热器换热系数出现最大值;换热器压降随热流密度和系统流速的增加而增大。  相似文献   

18.
针对电子器件的高效冷却问题,对自然循环回路系统内表面加工有方柱形微结构的硅片上FC-72的强化沸腾换热性能进行了实验研究.测试了两个芯片,其表面上的方柱形微结构的边长均为30μm,但高度分别为60 μm和200 μm.沸腾介质的过冷度设为10 K、25 K和35 K.随着壁面过热度的增加,微结构表面芯片上的热流密度急剧增加且临界热流密度时芯片的表面温度低于芯片回路正常工作的临界上限温度85℃,这与其在池沸腾换热中的特点一样.但临界热流密度值与池沸腾情况相比有所降低.  相似文献   

19.
以去离子水为工质,拟在钛板表面利用线切割进行微槽处理,采用阳极氧化法制备出二氧化钛纳米管阵列的微纳耦合表面,研究该表面的强化沸腾传热性能.通过场发射扫描电镜表征其微观结构形貌,利用接触角测量仪检测表面的静态接触角.结果表明,与光板相比,微槽结构增大了传热表面,规整的纳米管阵列具有亲水特性,接触角明显减小,微纳耦合表面的传热系数和临界热流密度分别达到了15.5 kW·m~(-2)·℃~(-1)和420.1 kW·m~(-2),分别提高了158.3%和50%,结合实验现象及机理分析可知,微纳耦合表面的微通道结构为气泡继续生长提供了支撑,有效避免了换热壁面被合并的大气泡完全覆盖;过热度达到一定温度后,更小的活化中心被激活,过热度随着热流密度的上升出现下降的趋势。微纳耦合表面对池沸腾具有强化作用。  相似文献   

20.
以水和三种不同质量分数(0.2%、0.5%和1.0%)的Al2O3纳米流体作为实验工质,在三种不同尺寸微槽道中进行饱和沸腾传热实验,研究沸腾传热过程中临界热流密度(Critical Heat Flux,简称CHF)的变化特性。主要分析了微通道水力半径、纳米流体浓度、进口过冷度和临界热力学干度等因素对CHF的影响。实验结果发现:在水力半径较小的槽道内CHF发生得比较早;CHF随纳米流体浓度的增大而增大;CHF随进口过冷度增大有细微增大的趋势;CHF随临界热力学干度的增大而减小。文中还将实验结果与现有的、工况条件与本实验相近的理论模型进行了拟合比较,发现理论模型能较好预测本实验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号