首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

2.
SiO2的赝晶化及AlN/SiO2纳米多层膜的超硬效应   总被引:1,自引:0,他引:1       下载免费PDF全文
赵文济  孔明  黄碧龙  李戈扬 《物理学报》2007,56(3):1574-1580
采用反应磁控溅射法制备了一系列不同SiO2层厚度的AlN/SiO2纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能,研究了SiO2层在多层膜中的晶化现象及其对多层膜生长方式及力学性能的影响. 结果表明,由于受AlN六方晶体结构的模板作用,溅射条件下以非晶态存在的SiO2层在其厚度小于0.6 nm时被强制晶化为与AlN相同的六方结构赝晶体并与AlN形成共格外延生长. 由于不同模量的两调制层存在晶格错配度,多层膜中产生了拉、压交变的应力场,使得多层膜产生硬度升高的超硬效应. SiO2随层厚的进一步增加又转变为以非晶态生长,多层膜的外延生长结构受到破坏,其硬度也随之降低. 关键词: 2纳米多层膜')" href="#">AlN/SiO2纳米多层膜 赝晶化 应力场 超硬效应  相似文献   

3.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

4.
We have investigated the origin of room temperature photoluminescence from ion-beam synthesized Ge nanocrystals (NCs) embedded in SiO2 using steady state and time-resolved photoluminescence (PL) measurements. Ge NCs of diameter 4-13 nm were grown embedded in a thermally grown SiO2 layer by Ge+ ion implantation and subsequent annealing. Steady state PL spectra show a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the SiO2 matrix. Time-resolved PL studies reveal double exponential decay dynamics on the nanoseconds time scale. The faster component of the decay with a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. Our results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.  相似文献   

5.
We have succeeded in doping arsenic (As) impurities into isotope germanium nanocrystals (nc-74Ge) uniformly dispersed in a SiO2 matrix by using the neutron transmutation doping (NTD) method. The samples’ inner structural transmutation is studied by combining Raman scattering, X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS) and Transmission electron microscope (TEM) methods. The Raman spectrum of the doped sample exhibits a relative intensity increase of the low frequency tail, blue shift of the main Raman peak (∼300 cm−1) and a high frequency tail, while the undoped sample does not. Together with the XRF, XPS and TEM, we believe that the relative intensity increase of the low frequency tail arises from an increase of amorphous 74Ge (a-74Ge) induced by the irradiation damage. The blue shift of the main Raman peak comes from the mismatch of the crystal lattice which arose from the As impurity introduction. And the high frequency tail is due to transmuted-impurities (As) in the nc-74Ge which was introduced by NTD.  相似文献   

6.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

7.
Ge nanocrystals embedded in an SiO2 matrix were prepared by the atom beam co-sputtering (ABS) method from a composite target of Ge and SiO2. The as-deposited films were rapid thermally annealed at the temperatures 700 and 800 °C in nitrogen ambience. The structure of the films was evaluated by using X-ray diffraction (XRD) and Raman spectroscopy. XRD results reveal that as-deposited films are amorphous in nature whereas annealed samples show crystalline nature. Raman scattering spectra showed a peak of Ge–Ge vibrational mode shifted downwards to 297 cm?1, presumably caused by quantum confinement of phonons in the Ge nanocrystals. Rutherford backscattering spectrometry has been used to measure the thickness and Ge composition of the composite films. Size variation of Ge nanocrystals with annealing temperature has been discussed. The advantages of ABS over other methods are highlighted.  相似文献   

8.
Ge ions were implanted at 100 keV with 3×1016 cm−2 into a 300  nm thick SiO2 layer on Si. Visible photoluminescence (PL) around 2.1 eV from an as-implanted sample is observed, and faded out by subsequent annealing at 900°C for 2 h. However, PL shows up again after annealing above 900°C at the same peak position. Compared with the as-implanted sample, significant increase of Ge–Ge bonds is measured in X-ray photoelectron spectroscopy, and the formation of Ge nanocrystals with a diameter of 5 nm are observed in transmission electron microscopy from the sample annealed at 1100°C. We conclude that the PL peak from the sample annealed above 900°C is caused by the quantum confinement effects from Ge nanocrystals, while the luminescence from the as-implanted sample is due to some radiative defects formed by Ge implantation.  相似文献   

9.
Photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray reflectometry and high resolution electron microscopy have been used to interpret the photoluminescence properties of annealed (3/19 nm) Si/SiO2 multilayers grown by reactive magnetron sputtering. The multilayers show an emission in the visible and near-infrared range after heat treatment from 900°C which tends to decrease from 1200°C. Three different origins for the photoluminescence activity have been found. An anneal temperature of 1200°C is necessary to optimise the silicon crystallisation within the silicon sublayers.  相似文献   

10.
利用等离子体增强化学气相沉积法制备了氢化非晶硅/二氧化硅多层膜,通过两步热退火的方法获得了尺寸可控的纳米硅/二氧化硅多层结构,晶粒尺寸约为4nm,在室温下观察到了较强的光致可见发光,其发光峰位于750nm.在此基础上,发现合适的氢气氛退火能有效地提高材料的发光强度.电子顺磁共振实验表明氢气氛退火有效地降低了纳米硅中的非辐射复合中心而导致发光效率的提高.  相似文献   

11.
邵淑英  范正修  邵建达 《物理学报》2005,54(7):3312-3316
ZrO2/SiO2多层膜由相同沉积条件下的电子束蒸发方法制备而成, 通过改变多层膜中高(ZrO2)、低(SiO2)折射率材料膜厚组合周期数的方法,研究了沉积 在熔石英和BK7玻璃 基底上多层膜中残余应力的变化. 用ZYGO光学干涉仪测量了基底镀膜前后曲率半径的变化, 并确定了薄膜中的残余应力. 结果发现,该多层膜中的残余应力为压应力,随着薄膜中膜厚 组合周期数的增加,压应力值逐渐减小. 而且在相同条件下,石英基底上所沉积多层膜中的 压应力值要小于BK7玻璃基底上所沉积多层膜中的压应力值. 用x射线衍射技术测量分析了膜 厚组合周期数不同的ZrO2/SiO2多层膜微结构,发现随着周期数增 加,多层膜的结晶程 度增强. 同时多层膜的微结构应变表现出了与所测应力不一致的变化趋势,这主要是由多层 膜中,膜层界面之间复杂的相互作用引起的. 关键词: 2/SiO2多层膜')" href="#">ZrO2/SiO2多层膜 残余应力 膜厚组合周期数  相似文献   

12.
We present a study on amorphous SiO/SiO2 superlattice performed by grazing-incidence small-angle X-ray scattering (GISAXS). Amorphous SiO/SiO2 superlattices were prepared by high-vacuum evaporation of 3 nm thin films of SiO and SiO2 (10 layers each) onto Si(1 0 0) substrate. After the deposition, samples were annealed at 1100 °C for 1 h in vacuum, yielding to Si nanocrystals formation. Using a Guinier approximation, the shape and the size of the crystals were obtained. The size of the growing nanoparticles in the direction perpendicular to the film surface is well controlled by the bilayer thickness. However, their size varies more significantly in the direction parallel to the film surface.  相似文献   

13.
Ge nanocrystals (NCs) embedded in SiO2 are synthesized by ion implantation, and the surface vibrational modes of the Ge NCs are investigated using the low-frequency Raman scattering (LFRS) technique. LFRS studies show distinct low-frequency Raman modes in the range 6.5-21.2 cm−1 for the Ge NCs depending on the implant dose and annealing temperature. These low-frequency Raman modes are attributed to the confined surface acoustic phonon modes of Ge NCs with (0,0) spheroidal mode and (0,3) torsional modes. Our results are in excellent agreement with the recent theoretical predictions of surface vibrational modes in Ge NCs.  相似文献   

14.
A Raman frequency upshift of nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high grown temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method to tune the optical and the electronic properties of Si nanocrystals for strained engineering.  相似文献   

15.
Effects of post-hydrogen plasma annealing (HPA) on a-Si:H/SiO2 and nc-Si/SiO2 multilayers have been investigated and compared. It is found that photoluminescence (PL) from hydrogen-passivated samples was improved due to the reduction of non-radiative recombination defects. Some interesting difference is that during HPA, atomic hydrogen can directly passivate defects of a-Si:H/SiO2, which results in the reappearance of luminescence band at 760 nm, while for nc-Si/SiO2, hydrogen passivation requires additional thermal annealing after nc-Si/SiO2 multilayer was treated by HPA. It is indicated that higher atomic mobility is needed to passivate defects at nc-Si/SiO2 interface compared with a-Si:H/SiO2 interface.  相似文献   

16.
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine antireflection coatings on 4H-SiC-based UV optoelectronic devices.  相似文献   

17.
采用共溅射方法和Eu离子注入热生长的SiO2方法得到SiO2(Eu)薄膜,Eu离子的浓度为4%和0.5%.对样品X射线吸收近边结构(XANES)的研究和分析表明,在高温氮气中发生了Eu3+向Eu2+的转变.SiO2(Eu)薄膜高温氮气退火下蓝光的发射证明了这一结论 关键词: 2(Eu)薄膜')" href="#">SiO2(Eu)薄膜 XANES  相似文献   

18.
Ge-doped Sb2Te3 films were prepared by magnetron sputtering of Ge and Sb2Te3 targets on SiO2/Si (1 0 0) substrates. The effect of Ge doping on the structure was studied in details by X-ray diffraction, differential scanning calorimetry, and X-ray photoelectron spectroscopy measurements. It is indicated that Ge atoms substitute for Sb/Te in lattice sites and form Ge-Te bonds, moreover, a metastable phase was observed in Ge-doped specimens. Both crystallization temperature and resistivity of amorphous Sb2Te3 increase after Ge doping, which are beneficial for improving room temperature stability of the amorphous state and reducing the SET current of chalcogenide random access memory.  相似文献   

19.
Optical transitions in Ge nanocrystals formed by high-pressure annealing of the Ge+ ion implanted SiO2 films have been studied by Raman and photoluminescence spectroscopy. It has been found that the E1,E1+Δ1 Raman resonance shift observed from the unstrained and hydrostatically compressed nanocrystals corresponds to the quantization of the electron-hole state spectrum of the Ge band. It has also been established that the appearance of a green photoluminescence band centered at 420-520 nm correlates with the formation of strained nanocrystals. Comparisons of the PL data with HRTEM results have been made, which suggest that the green PL arises from strained Ge nanocrystals of a radius of less than 5 nm. The direct electron-hole recombination at Γ is discussed as a possible origin of the observed photoluminescence band.  相似文献   

20.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号