首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
针对晃动平台对空拍摄大视场摄像机难以标定的情况,提出了利用无人机(UAV)作为动态控制点来现场标定摄像机参数的方法。该方法控制无人机在摄像机视场内飞行,并用与晃动平台固联的无人机定位测量系统对无人机位置进行测量,从而整个飞行过程中的无人机位置均可当作控制点对摄像机进行标定。实验中控制点数目充足,易满足控制点在空间和在图像上均匀散布的要求,可以准确求解摄像机内外参数。突破了无法在视场中布设传统像机标定方法所需控制点,使晃动平台上大视场摄像测量无法现场采集参考图像进行高精度标定的局限。对实验条件要求低,最少只需要晃动平台基准坐标系下2个基准点和方位像机光心位置即可标定摄像机内外参数。该方法已成功应用于系泊状态下船舶中摄像机参数的标定。  相似文献   

2.
面向大视场视觉测量的摄像机标定技术   总被引:7,自引:0,他引:7  
杨博文  张丽艳  叶南  冯新星  李铁林 《光学学报》2012,32(9):915001-174
提出了一种面向大视场高精度视觉测量的摄像机标定新方法,该方法采用亮度自适应的单个红外发光二极管(IR-LED)作为目标靶点,将该靶点固定在三坐标测量机的测头上,并依次精确移动至预先设定的空间位置,每次靶点到达设定的空间位置时,摄像机对靶点进行图像采集。利用三坐标测量机的精确位移,在三维空间构成一个虚拟立体靶标。针对虚拟立体靶标在大视场摄像机标定中只能覆盖一小部分标定空间的问题,通过自由移动摄像机在多个方位对虚拟立体靶标进行拍摄,使得多个虚拟立体靶标分布于整个标定空间。摄像机在每个方位对虚拟立体靶标的拍摄都标定出一组摄像机的内、外参数,然后以摄像机内参数和摄像机在各个方位下拍摄的虚拟立体靶标在摄像机坐标系下的位置及姿态参数为优化变量,建立以所有三维靶点位置重投影误差平方和为最小的目标函数,采用非线性优化方法求解摄像机标定参数的最优解。该方法较好地解决了大视场视觉测量中大尺寸靶标加工困难、摄像机标定精度难以保证的问题。仿真和实际标定实验均证明此方法可以有效提高大视场摄像机的标定精度。  相似文献   

3.
基于无穷单应的大视场摄像机标定方法   总被引:2,自引:0,他引:2  
苑云  朱肇昆  张小虎  尚洋  于起峰 《光学学报》2012,32(7):715002-175
在大视场摄像机标定中,常常会出现由于场景过于单一而很难达到自标定所需要的场景约束和运动约束条件、立体标定所需要的强立体条件或者平面靶板标定所需要的绝对共面条件,如指向高空区域的摄像机标定任务就很难满足上述要求,因而大视场摄像机标定需要较为弹性的标定算法。提出一种基于无穷单应的大视场摄像机标定方法,该方法最少只需要4个非共线控制点和摄像机粗略的位置即可求解无穷单应,并且提出一种坐标变换方法以保证线性求解和优化无穷单应时的稳定性。从无穷单应中分解得到摄像机参数初始值,通过Levenberg-Marquardt(LM)优化算法最终实现摄像机的标定。在优化过程中,通过假设图像中心为主点和采用一阶径向畸变模型,相对增加了优化过程中的剩余自由度,能够实现4个像点为观测值的参数优化。相比于强立体或共面的条件,此方法所需条件很容易满足。仿真和实际实验验证了此方法的正确性和高精度,以及重复测量实验的灵活易实施。  相似文献   

4.
针对单目大视场平面测量时,测量平面内不便布置靶标和大尺寸靶标难以制作的问题,提出一种利用布设在平行面上的小尺寸平面靶标进行标定的方法。选定一个平行面为标定平面,将单个小尺寸平面靶标合理放置在标定平面的多个位置拍摄,整合构造出一个大尺寸平面靶标,采用非线性优化的方法进行摄像机内、外参的优化求解。结合平行约束和距离参数得到测量平面与图像平面的单应矩阵,实现大视场平面测量。建立平面测量的精度模型,对测量区域各处精度的分布以及影响测量精度的摄像机内参、安装角度和高度等因素进行理论分析和实验验证。实验结果表明:该方法可有效保证整体测量精度;在上底920mm、下底1360mm、高920mm的梯形视场内标定,距标定平面200mm的测量平面内的测量误差低于0.6%;测量区域内各处误差的分布趋势与精度模型一致。此方法完全适用于大视场平面测量。  相似文献   

5.
大视场短焦距镜头CCD摄像系统的畸变校正   总被引:11,自引:1,他引:10  
从光学测量角度出发,结合计算机视觉中的摄像机标定方法,解决了大视场短焦距镜头CCD摄像系统的畸变校正问题。与摄像机标定不同,畸变校正中仅标定内部参数,外部参数作为已知条件。采用线性畸变模型,由最小二乘法解线性方程组得到摄像系统畸变模型的畸变系数。介绍了数字图像中像素间距和光学中心的标定方法。通过比较由标定参数得到的畸变图像和摄像机采集的畸变图像对实验标定精度进行评定,实验结果表明边缘视场(112°)的标定精度达到了0 75%。  相似文献   

6.
为了提高大视场、远距离的双目摄像机标定精度,提出一种基于位姿约束的摄像机标定算法。该方法利用双目摄像机之间的三维位姿关系是刚体变换这一属性,标定出左、右摄像机相对位姿的外部参数。利用相对位姿为约束条件求取摄像机的初始内部参数,剔除较大的重投影误差值对应的标定图像组,重复迭代直至重投影误差平均值小于指定值,得到多个待优化的摄像机内部参数。再将最后标定图像组的角点坐标、待优化的摄像机内部参数和相应的外部参数,建立一个以角点三维重构坐标值与实际设定角点三维坐标值的模均值为最小的目标函数,求解出双目摄像机标定参数的最优解。该方法很好地解决了误差大的标定图像造成的影响,且充分利用了双目摄像机之间的位姿约束关系。通过仿真和标定实验可以看出,本文方法可以实现大视场双目摄像机的高精度标定。  相似文献   

7.
针对飞行试验测量视场大相机标定精度低的问题,提出一种高精度CCD相机分区域标定方法。该方法首先通过将标靶均匀布置在摄像机视场内,使得标靶尽可能均匀错落地充满整个视场范围,再结合人眼判读的方式求解靶标的像面位置,最终与全站仪三维坐标形成精确的空间标定点集。接着,将像平面按横向方向等间距分割成N个区域,并结合后方交会的方法分别对每个子区域进行相机参数的计算。实验结果表明:经过分区域标定,相机采集点的总误差比单区域标定法降低了4%(N=3)。算法可实现指定区域的相机参数计算,基本满足中高等精度的工业测量要求。所本文研究可应用于位置相对固定不变的工业视觉测量,特别是大工件测量领域。  相似文献   

8.
基于神经网络的视觉系统标定方法   总被引:3,自引:1,他引:2  
为了解决摄像机标定存在的若干问题 ,根据立体视觉原理 ,提出了基于神经网络的双目视觉系统标定方法。通过对双目摄像机的有效视场分析 ,确定了一次测量面积 ,并把像对视差作为网络输入 ,建立空间点世界坐标与图像坐标非线性映射关系 ,使系统不经过复杂的摄像机内外参数标定 ,就能直接提取物体的三维信息 ,增加了系统的灵活性。实验证明 ,该方法有效可行  相似文献   

9.
一种大视场相位测量轮廓术系统标定方法   总被引:9,自引:1,他引:8  
李勇  苏显渝 《光学学报》2006,26(8):162-1166
在进行大视场相位测量轮廓术系统参量标定时需要大的标定平面和精密移动台,由于携带不方便,不易进行现场标定。提出了一种用于相位测量轮廓术系统参量的高精度、现场标定方法,采用一块较小的平面标定靶在有效测量体积内不同位置多次摆放,以获取密集的数据点。先标定出摄像机的内参量和外参量,再指定一个全局参考平面和若干辅助参考平面,然后在图像平面上分区计算出每个位置标定靶上每点相对辅助参考平面的高度差和相位差,最后应用极大似然估计法估计出相位高度映射参量。实验中平面高度测量的标准偏差达到0.0433 mm。这种方法只需要较小的平面标定靶,标定过程方便、精度高,完全适合大视场三维测量相位测量轮廓术系统现场标定要求。  相似文献   

10.
传统宽视场三维测量常采用多传感器构建的测量系统实现,传感器的同步和多传感器测量坐标系的统一两大难点导致测量精度与测量速度难以兼容。为了实现更宽视场范围内目标物的实时三维测量,设计了1种由单摄像机和2个四棱锥反射镜构成的全向立体视觉传感器。2个四棱锥反射镜对称摆放,顶部相对,下四棱锥顶端安装高分辨率工业摄像机。四棱锥反射镜成像形成4对虚拟摄像机,等效于传统双目视觉传感器的1对摄像机同时采集同名特征点,从而由4对虚拟摄像机实现水平4个方向的同步测量。解决了传统双目视觉传感器体积大、视场狭小、图像采集不同步等问题,且有效保证了图像的透视投影不变性,避免了曲面镜成像产生的图像畸变,减小了后续工作难度。  相似文献   

11.
于之靖  潘晓 《光学学报》2012,32(11):1112003
提出了一种基于构建初始测量网络的相机内部参数校准方法,有效解决了二维平面靶标在深度方向信息的不足以及三维靶标空间的限制等问题。通过对靶标板进行初始成像,按照测量网络的构建原则建立初始测量网络,经过后方交会求解外方位、前方交会求解空间三维靶标点坐标,最后由光束平差优化求解相机内部参数。利用标定后内部参数求解空间点坐标,实验结果表明,采用构建初始测量网的误差平均值为0.0794,优于平面靶标和立体靶标标定的-0.2443和-0.1916。同时校准所用时间也明显小于虚拟立体校准,即该方法具有快速、精确和方便等优点,满足大空间视觉测量中相机内部参数现场校准的要求。  相似文献   

12.
杨建柏  赵建  孙强 《中国光学》2021,(2):320-328
提出了一种新的投影仪标定方法以提高数字光栅投影三维测量中投影仪标定的准确性。该方法结合二次投影技术和交比不变性进行投影仪标定。采用二次投影技术解决投射图案与标定板图案互相干扰的问题;采用交比不变性以避免引入相机的标定误差。接着进行了对比实验,以验证所提方法的有效性。选取需要相机参数的传统投影仪标定方法以及根据全局单应性的投影仪标定方法作为对比方法。结果显示,本方法的反投影误差标准差分别从(0.2275,0.2264)像素和(0.1397,0.0997)像素降低到(0.0645,0.0601)像素,反投影误差的最大值分别从1.222像素和0.5617像素降低到0.2421像素。另外,该方法还可同时标定相机,从而获得整个三维测量系统的参数。本文提出的方法可以避免相机标定参数的误差传递,提高投影仪的标定精度。  相似文献   

13.
吴芳  茅健  周玉凤  李情 《应用声学》2017,25(7):206-208, 229
相机标定技术是结构光三维视觉测量的关键技术之一,结构光系统的相机标定的精度对三维测量的精度有很大影响。首先对三线结构光系统图的相机标定方法进行了分析,简单介绍了工业相机成像的几何模型及标定的原理;其次利用Harris角点检测方法提取特征点坐标,并选用了BP神经网络来校正工业相机的畸变模型,以提高标定算法的优化速度和标定精度;最后采用张正友的平面标定法对校正后的摄像机模型进行标定实验,由实验结果知,该方法具有一定的准确性和有效性,在一定误差范围内,基于神经网络畸变校正的张正友相机标定能够有效提高视觉检测的精度。  相似文献   

14.
Camera calibration plays an important role in the field of machine vision applications. During the process of camera calibration, nonlinear optimization technique is crucial to obtain the best performance of camera parameters. Currently, the existing optimization method aims at minimizing the distance error between the detected image point and the calculated back-projected image point, based on 2D image pixels coordinate. However, the vision measurement process is conducted in 3D space while the optimization method generally adopted is carried out in 2D image plane. Moreover, the error criterion with respect to optimization and measurement is different. In other words, the equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. All the reasons mentioned above will cause accuracy decrease for 3D vision measurement. To solve the problem, a novel optimization method of camera parameters used for vision measurement is proposed. The presented method is devoted to minimizing the metric distance error between the calculated point and the real point in 3D measurement coordinate system. Comparatively, the initial camera parameters acquired through linear calibration are optimized through two different methods: one is the conventional method and the other is the novel method presented by this paper. Also, the calibration accuracy and measurement accuracy of the parameters obtained by the two methods are thoroughly analyzed and the choice of a suitable accuracy evaluation method is discussed. Simulative and real experiments to estimate the performance of the proposed method on test data are reported, and the results show that the proposed 3D optimization method is quite efficient to improve measurement accuracy compared with traditional method. It can meet the practical requirement of high precision in 3D vision metrology engineering.  相似文献   

15.
为了有效校正星载偏振相机成像时太阳耀斑区产生的拖尾,以高分五号卫星多角度偏振成像仪为例,结合多角度偏振成像仪在轨成像特点,理论分析了图像获取过程中拖尾产生的机理.建立了光斑区不含饱和像元情况下能够有效对漏光拖尾进行校正的矩阵法与暗行法校正模型,以及光斑区全像元饱和情况下结合矩阵法与暗行法估计光斑区饱和像元强度的遗留拖尾校正模型,该算法充分考虑了强光饱和条件下太阳耀斑区产生的漏光拖尾与遗留拖尾.利用实验室积分球光源成像光斑模拟在轨运行时遥感图像太阳耀斑开展拖尾校正方法可行性验证实验.实验结果表明,该方法不仅能有效去除图像中的拖尾噪声,提高图像质量,而且能够对光斑饱和像元强度进行有效估计.最后,分析多角度偏振成像仪在轨成像图中耀斑区拖尾对其辐亮度测量精度的影响,分析结果表明,拖尾校正前后,灰度方差由202.69×10^6下降至2.32×10^6,平均梯度由5.08×10^-1下降至2.26×10^-1.  相似文献   

16.
针对飞行试验机载摄像机的标定,提出了一种基于光束法平差的高精度像机标定方法。首先,通过在测试目标周围放置带有编码标志点的标定板,拍摄其多种状态,经图像处理,获取标志点的编码以及中心坐标。然后通过相对定向、绝对定向、三维重建、捆绑调整,以及加入标志点之间的距离约束,得到数字摄像机内外方位元素和镜头畸变差参数,实现机载摄像机快速标定。实验结果表明:该标定方法不需要做高精度的现场控制点,重投影误差小于1cm,标定精度满足飞行试验测试要求。  相似文献   

17.
CBERS-02B星HR相机内方位元的在轨标定方法   总被引:1,自引:0,他引:1  
遥感相机内方位元素的在轨标定对遥感图像的定位和测量具有重要意义.利用线阵推扫传感器构像模型,提出了一种对CBERS-02B星HR相机内方位元素进行在轨标定的方法.该方法以内方位元素和姿态角为未知参数,建立地面控制点和相应像点的共线方程组,通过解算共线方程组获得内方位元素.实验证明,用该方法对内方位元素进行在轨标定,具有...  相似文献   

18.
点阵列标定模板图像特征点提取方法   总被引:1,自引:1,他引:0       下载免费PDF全文
在摄像机标定过程中,提取标定模板图像特征点的精度是影响摄像机内外参数标定精度的重要因素。本文根据条纹投影三维轮廓测量实验系统的要求制作了点阵列标定模板,在图像处理边缘理论的基础上,以圆的解析特性为依据,采用坐标转换思想,引进圆系描述点、圆对应关系,运用统计学理论,提出提取点阵列标定模板图像特征点的新方法,并通过实验验证了该方法的正确性和可行性。为下一步的摄像机内外参数求解做了铺垫。  相似文献   

19.
熊鑫  孙冬梅  范文  徐海鹏 《应用光学》2015,36(5):784-790
针对光笔式双目视觉测量系统的标定问题,讨论了关于相机内参、双相机外参以及测量笔的相关标定理论,开发了一整套基于LabVIEW的标定系统。运用张氏平面标定法实现了相机内参标定。结合基于标准长度的外部参数标定方法,实现了双相机外参数标定。运用粒子群算法和LM算法相结合,加快了目标函数高维寻优速度。在测量笔标定环节,提出了一种基于最小二乘法的现场校准方法。标定系统完成了后期开展相关测量前的所有准备工作,具有较高的精度和实用性。在测量系统标定结果基础上对直径25 mm标准陶瓷球进行测量,测量结果标准差达到0.019 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号