首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
薛定格猫态佯谬的双波解答   总被引:3,自引:0,他引:3  
粒子在不可穿透器壁前的入射和反射运动,在动能大时为薛定格猫态,经典力学和双波量子力学对这体系的找述为完全描述,物理上下引起任何问题,普通量子测量假设引出佯谬,因为一个波函数在大能量条件下不描述单个粒子而描述系统,佯谬的根源是量子力学解释中不正确的前提和假设。  相似文献   

2.
一维氢原子的双波描述   总被引:18,自引:3,他引:15       下载免费PDF全文
一维氢原子的定态解是二度简并的.由简并解可组合出三种典型解,它们对应三种不同的系综.双波理论描述单个氢原子.对双波理论进行三种不同的系综平均就得出普通量子力学中的三种典型解.各种解都与经典力学结果进行了详细的比较. 关键词:  相似文献   

3.
二维氢原子的双波描述   总被引:7,自引:0,他引:7       下载免费PDF全文
运用双波量子理论,给出了二维氢原子的双波函数描述,并讨论了其经典极限.结果表明,双波函数描述单个粒子的运动状态,并将通常的量子力学描述结果作为系综统计平均值包含在其中. 关键词:  相似文献   

4.
质谱仪中带电粒子运动的双波描述   总被引:18,自引:5,他引:13       下载免费PDF全文
黄湘友 《物理学报》1996,45(5):729-737
一个已知能量的带电粒子在质谱仪中于何时何地进入和离开磁场,如何用量子力学来计算是个很有意思的问题。这一体系的双波描述给出类似于经典力学的结果,但粒子能量取量子化分立值。 关键词:  相似文献   

5.
均匀磁场中带电粒子运动的双波描述   总被引:13,自引:0,他引:13       下载免费PDF全文
用双波量子理论描述带电粒子在均匀磁场中的运动,得到对单个粒子运动状况的完全描述。在任何时刻都能说出任一力学量的确切数值。通常量子力学中的概率性和平均值公式来源于双波描述对某类系综的平均结果。量子力学中的规范变换特性也能由系综平均看出。 关键词:  相似文献   

6.
氢原子及类氢原子的双波描述   总被引:2,自引:2,他引:0  
采用双波量子理论对氢原子及类氢原子进行了双波函数描述,讨论了其经典极限。证明了双波函数满足波函数的归一化条件。在双波函数描述下,能量和角动量F的平均值为En和mh。同时求出了r,cosθ,sinθ,cosψ,sinψ和X,Y,Z在双波函数描述的平均值。对力学量f求统计平均值的结果表明,单波函数描述的是氢原子及类氢原子系统的运动状况。只有双波函数描述的是单个粒子的运动状况。  相似文献   

7.
研究了双波量子理论中守恒定律的数学形式,讨论了三维各向同性谐振子的守恒量及其经典极限.结果表明,双波量子理论中的守恒定律适用于单个粒子,而通常量子力学中的守恒定律仅适用于统计系综. 关键词:  相似文献   

8.
EPR问题的双波解答   总被引:1,自引:0,他引:1  
用双波描术连续力学量和分立力学量的EPR问题,所得结果具决定论特点,只要给出初始力学量值以及作为初始条件之一的隐参数数值,我们可完全预知两个分离开的两个粒子的运动,在双波描述中不存在的EPR佯谬。当对隐参数作统计平均时,双波描述回到通常的单个波函数描述,这时EPR佯谬出现,EPR倦谬是同由于我们认为单个波函数可完全描述单个体系而引起的,这些结果可直接用来分析EPR问题的量子光学实验。  相似文献   

9.
量子光学基础理论·氢原子及类氢原子的双波描述马爱群 , 马志民 , 黄丽华(47)………………………………………………超短脉冲偏振纠缠干涉江云坤 , 李 剑 , 史保森 , 郭光灿(93)…………………………………………铯原子永久电偶极矩实验研究黄湘友 , 游佩林(97)…………………………………………………………对光子和高速粒子散射的研究孟现柱 (1 0 2 )……………………………………………………………………激光等离子体中多光子非线性Compton散射的光子加速郝东山 , 郝晓飞 (1 0 5)……………………………有源RLC介观电路量子…  相似文献   

10.
张兆群  宁成 《光子学报》1999,28(1):21-24
把薛定谔方程当成扩展了的经典力学中的雅科毕-哈密顿方程,对单个粒子在均匀场U(x)~±x中的运动进行因果描述。严格求解薛定谔方程,得到了上述两种情况下具有量子力学能级分立特性的粒子的速度随空间位置变化的曲线u(x),这两条速度曲线u(x)都可以遵循对应原理退化到与经典力学的速度曲线Ucla(x)重合。  相似文献   

11.
运用双波函数量子理论,给出了单电子原子模型势中粒子的双波函数描述.结果表明运用双波函数描述的是单个粒子的运动,并将通常的量子力学描述结果作为系综统计平均值包含在其中.  相似文献   

12.
We construct a perturbative solution to classical noncommutative gauge theory on R3 minus the origin using the Groenewald-Moyal star product. The result describes a noncommutative point charge. Applying it to the quantum mechanics of the noncommutative hydrogen atom gives shifts in the 1S hyperfine splitting which are first order in the noncommutativity parameter.  相似文献   

13.
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.  相似文献   

14.
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.  相似文献   

15.
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative formulation of mechanics which provides a continuous transition between quantum and classical mechanics via environment-induced decoherence.  相似文献   

16.
17.
一维无限深方势阱中粒子动量概率分布引出的问题   总被引:2,自引:1,他引:1  
王国文 《光子学报》1998,27(5):389-390
本文强调泡利关于一维无限深方势阱中粒子动量的结论与标准量子力学的逻辑推论不一致,而标准量子力学是自洽的。指出,当我们在一个量子态上掺入某种直观的经典力学内容时要很谨慎。至于对量子力学本身,至今尚无一种公认的诠释。  相似文献   

18.
We show in this paper that the electron’s quantum dynamics in hydrogen atom can be modeled exactly by quantum Hamilton-Jacobi formalism. It is found that the quantizations of energy, angular momentum, and the action variable ∫p dq are all originated from the electron’s complex motion, and that the shell structure observed in hydrogen atom is indeed originated from the structure of the complex quantum potential, from which the quantum forces acting upon the electron can be uniquely determined, the stability of atomic configuration can be justified, and the electron’s complex trajectories can be derived accordingly. Based on the derived electron’s trajectory, we can explain why the electron appears at some positions with large probability, while at some other positions with small probability. The positions with maximum probability predicted by standard quantum mechanics are found to be just the stable equilibrium points of the electron’s non-linear complex dynamics. The electron’s trajectories in hydrogen atom are discovered to be very diverse and strongly state-dependent; some of them are open and non-periodic, while some are closed and periodic. Over such a great diversity of orbits, commensurability condition ensuring the existence of closed orbit will be derived and the de Broglie’s standing wave pattern will be identified. Along the investigation of the electron’s orbits in hydrogen atom, we will also clarify why old quantum mechanics using the concept of classical orbit can correctly predict the energy quantization of hydrogen atom and meanwhile why it is not applicable to general quantum system. Finally, the internal mechanism of how the precessing, non-conical eigen-trajectories can evolve continuously to the classical, non-precessing, conical orbits as n → ∞ is explained in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号