首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 437 毫秒
1.
水下湿法焊接技术近年来得到了越来越广泛的应用,提高水下湿法焊接的焊接质量是很多研究的重点。水下湿法焊接电弧等离子体组分直接影响焊接稳定性和焊接质量,但对水下湿法焊接电弧等离子体组分的相关研究一直很少,更缺乏从光谱层面对水下湿法焊接电弧等离子体组分进行诊断研究。首先通过对水下湿法焊接的过程进行研究,搭建了水下湿法焊接实验平台,通过电弧光谱诊断系统,对得到的电弧光谱进行诊断分析,确定了计算电弧等离子体组分所考虑的主要元素。在光谱诊断结果的基础上,进一步对水下湿法焊接电弧气泡成分的解离和电离过程进行分析,确定了计算水下湿法焊接电弧等离子体组分所需考虑的18种粒子,在计算得出配分函数的基础上,通过牛顿迭代法求解由Saha方程、电荷准中性和方程原子守恒方程组成的方程组,得出了各个粒子的数密度,绘制了各个粒子的数密度随温度变化的曲线。计算结果表明,在不同温度区间,水下湿法焊接电弧等离子体中发生的反应不同,生成的主要粒子不同,在温度较低时,水下湿法焊接电弧等离子体主要是由没有电离的分子、原子及电离能较低的低价态离子组成,随着温度的升高,解离反应和电离反应持续进行,高价态的离子不断被电离出来;不同粒子随温度变化的趋势也不同,有的粒子数密度随温度持续升高,有的不断降低;计算的结果显示各粒子在不同温度区间变化的趋势与光谱诊断结果相符合,验证了计算结果的正确性。等离子体组分的确定为从机理层面对水下湿法的电弧进行研究奠定了基础,也为进一步对水下湿法焊接电弧热力学属性及辐射属性等参数的研究提供了理论依据。  相似文献   

2.
水下湿法焊接技术近年来得到了广泛应用,但目前对水下湿法焊接引弧过程的物理本质的研究很少。首先搭建了水下湿法焊接电弧光谱诊断平台,同步采集不同水深条件下焊接过程中的电流、电压及光谱信号,对不同水深条件下水下湿法焊接引弧阶段进行界定,高速摄像机拍摄水下湿法焊接引弧过程以更直观观察引弧过程中电弧、气泡等水下动态变化。在此基础上,设置光谱仪延时,分别采集了引弧5,10,15,20及25 ms的光谱信号;改变水深条件,得到不同水深条件下引弧不同时刻的电弧光谱图。根据谱线选取原则综合分析,选取Fe元素作为计算水下湿法焊接引弧电弧温度的特征元素。引弧不同时刻均选取了五组数据,运用统计分析的方法对五组数据做平均化处理,以保证计算结果的准确性和可靠性。从Fe元素谱线中选取了五条合适的谱线作为计算水下湿法焊接引弧过程电弧温度的目标谱线,再利用玻尔兹曼图示法分别计算了不同水深条件下引弧不同时刻的水下湿法焊接电弧等离子体温度。结果表明:在相同水深条件下,引弧过程中电弧等离子体温度是随着引弧时间的不断增加而不断变化的,但其变化趋势并不是简单的线性增加,而是分别在引弧的不同时刻出现峰值;随着水深的增加,水下湿法焊接电弧等离子体的温度也随着上升,但其电弧温度的上升趋势开始变缓慢,40 m水深相对于20 m水深的电弧温度上升量要低于20 m水深条件下相对0.3 m水深条件下的电弧温度上升量。伴随着水深的增加,水下环境压力增大造成电弧进一步压缩,但压缩量有限。由于电弧被压缩,弧光的强度也增大。通过光谱分析的方法,从电弧物理的角度获悉水下湿法焊接引弧过程的物理本质,对认识电弧建立过程中微观击穿机理及实际生产中进一步提升引弧过程的稳定性提供了重要参考。  相似文献   

3.
水下湿法焊接技术近年来得到了广泛应用,但缺乏对其机理方面的研究,利用光谱分析的方法对水下湿法焊接引弧过程的电弧等离子体温度和电子数密度进行了研究。首先搭建了水下湿法焊接电弧光谱诊断平台,对焊接过程中的电流电压及光谱信号进行了同步采集,根据电流电压信号的数据对水下湿法焊接引弧过程进行了界定。在此基础上,通过光谱仪的延时功能分别采集了引弧5, 10, 15, 20及25 ms的光谱信号,对采集的光谱信号进行分析,标定了计算等离子体温度及电子数密度所需要的Fe元素谱线和H元素谱线,为了保证计算结果的准确性和可靠性,引弧不同时刻均选取了五组数据,运用统计分析的方法对五组数据作平均化处理,在标定的Fe元素谱线中选取了五条合适的谱线,利用玻尔兹曼图示法分别计算了引弧不同时刻的水下湿法焊接电弧等离子体温度,同时,根据光谱仪检测到的氢元素的α谱线,结合等离子体发射光谱的斯塔克谱线展宽理论,计算了水下湿法焊接引弧不同时刻的电子数密度。计算结果表明:在引弧的不同时刻,水下湿法焊接电弧等离子体温度变化呈现不同的特点,在引弧5和20 ms温度值分别出现峰值,到最后稳弧时刻温度值达到4 414 K;电子数密度在引弧不同时刻也不同,同样在引弧5和20 ms出现峰值,在出现峰值点的时刻,电流同样出现峰值。电弧等离子体温度和电子数密度在引弧不同时刻的变化趋势,验证了电弧的形成伴随着空间间隙被击穿的过程,其计算结果可以为进一步从电弧物理的角度探寻水下湿法焊接引弧过程的物理本质,引导并寻求更有效的引弧方法提供重要参考。  相似文献   

4.
金属氢化物作阴极的真空弧离子源,假设其放电产生双温度的非平衡态Ti-H等离子体,其内部的气体解离过程和粒子电离过程分别由Culdberg-Waage解离方程和Saha电离方程进行描述,结合原子发射光谱以及电荷准中性条件,求出Ti-H等离子体的电子温度Te、重粒子温度Th和粒子数密度之后,可更进一步对等离子体的质量密度、焓、比热容等热力学参数进行描述。在不同的电子数密度下,研究各参数随变量θ(电子温度Te与重粒子温度Th的比值)变化的情况。计算结果显示:电子数密度已知,随θ值升高,除氢气分子数密度外,等离子体温度和单原子粒子数密度的计算结果均变化甚微。高电子数密度时,等离子体中单原子粒子占绝对优势,热力学参数由其控制;低电子数密度下,随θ值的升高,等离子体逐步由单原子粒子占优势转为氢气分子占绝对优势,热力学参数的变化情况表现出相同的规律。  相似文献   

5.
焊接电弧等离子体的物理特性直接决定了焊接接头的成形形貌,分析双组分保护气体的脉冲钨极惰性气体保护焊(P-TIG)动态电弧物理特性,为深入开展混合气体保护焊的焊缝成形物理过程研究提供理论基础。氩-氮混合气体保护焊电弧具有高热特性可以增加熔深,但在焊接前混合均匀的保护气体,引弧后气体浓度会重新分布,使电弧等离子体物理特性的实时动态变化特点变得复杂。光谱诊断是电弧等离子体物理特性测量的最重要手段,但对双组分气体保护的P-TIG焊电弧特性的研究仍需深入进行,特别是对于易引起缺陷的起弧过程,其动态物理特性亟需深入分析。针对氩-氮混合气体P-TIG焊的引弧过程,以P-TIG焊产生的氩-氮双组分电弧等离子体为研究对象,提出利用窄带滤光片与CCD相结合的高速摄影实验系统采集双组分电弧等离子的动态光谱信息,获取特征谱Ar Ⅰ 794.8 nm和N Ⅰ 904.6 nm的P-TIG焊电弧光谱强度动态分布;提出利用双元素双组分标准温度法计算P-TIG焊引弧过程中距离钨极下方1,2,3和4 mm位置处电弧等离子体的动态温度及浓度,定量分析80%Ar+20%N2保护的P-TIG焊从引弧至电弧稳定过程的电弧等离子体物理特性实时分布。实验结果表明,80%Ar+20%N2保护的P-TIG焊电弧强度、电弧温度及浓度的变化均与脉冲电流的变化同步,焊接电流在3 ms内达到稳定状态,而电弧等离子体的强度、温度及浓度需要更长时间达到平衡状态。从起弧到电弧等离子稳定燃烧的过程中,基值期间和峰值期间的电弧等离子体强度均呈现先升高再降低的趋势;由于阴极的热传导及电流密度的变化,使得电弧等离子体轴向位置的峰值温度及基值温度均出现迅速升高再缓慢降低的现象;由于粒子间碰撞及摩擦力的影响,使得电弧等离子体的峰值及基值期间氩的浓度均呈迅速减小再缓慢增加的趋势,且氩的浓度均低于焊前浓度。  相似文献   

6.
电弧等离子体在其燃烧过程中,电、热过程和化学反应过程的变化十分迅速,因而给测试带来了困难,本文以电弧动态过程可测性的数理统计分析为基础,提出了一种用于实时诊断动态弧的测试方法。并研制了由微机测控的光电光谱测试装置。用这一技术,实现了对混合气体电弧等离子体和复杂成分的焊接电弧的温度、各种粒子数密度、压力等多种物理参量的实时诊断。对测得结果的分析表明,本文的工作具有高速、定  相似文献   

7.
针对活性剂等离子弧焊焊接过程,利用光谱分析方法对活性剂等离子弧焊焊接电弧进行光谱分析,采用红外热像伪着色法测定活性剂等离子弧焊焊接电弧温度场,并建立活性剂等离子弧焊焊接电弧热流密度径向分布模型,对焊接电弧的成分及焊接电弧温度场进行了研究。研究结果表明,常规等离子焊焊接电弧以氩原子和氩一次电离离子的谱线为主,金属蒸气谱线不突出,焊接电弧以气体粒子为主,属于气体电弧;活性剂等离子弧焊焊接电弧的光谱中氩原子及氩一次离子谱线的辐射强度增强,Ti,Cr,Fe金属谱线大量涌现;活性剂等离子弧焊焊接电弧的温度分布比较紧凑,温度场外形窄,温度分布范围较集中,电弧径向温度梯度较大;电弧径向温度分布呈现正态Gauss分布模式。  相似文献   

8.
单次脉冲工作的真空弧离子源,采用金属钛吸附氢形成的Ti-H固溶体作阴极,生成的等离子体同时包含金属钛和氢的成分,且在径向、横向以及时间尺度上都存在梯度,整个体系处于非平衡状态,不能用一个统一的温度来描述。假设由电子组成的子系统和由其他重粒子组成的子系统分别达到平衡,即Ti-H等离子体由电子温度和重粒子温度两个温度来描述,为双温度等离子体。采用Culdberg-Waage解离方程和Saha电离方程分别对系统中的分子解离和原子电离过程进行描述,结合等离子体电荷准中性条件,同时引入原子发射光谱这一无干扰的等离子体诊断方法,对Ti-H等离子体的温度和粒子数密度进行诊断。在MATLAB环境下,同时考虑金属Ti原子和一价Ti离子的电离,计算结果显示:根据谱线的斯塔克展宽确定的电子密度进行计算,除重粒子温度和氢气分子的数密度之外,其他的参数均可得到较准确的诊断结果;电子密度数值的准确性对计算结果有很大的影响;如果能够在计算之前确定重粒子温度,则可对Ti-H等离子体的温度和粒子数密度进行准确的定量分析。  相似文献   

9.
高铁提速受多方面因素制约,其中弓网离线对受流质量影响很大。在滑动接触模式下,受电弓与接触网的磨损均很严重。弓网离线产生的电弧是造成接触网和受电弓磨损的主要原因之一。电弧温度高,还具有电离特性,因此一般的传感器无法置于电弧中测量。光谱分析法在研究弓网电弧的温度及电子密度方面具有明显优势,基于此可进一步寻找耐磨损的新材料或者灭弧方法。因接触网使用铜合金材料,故选取铜元素特定光谱作为研究对象。采用Boltzman作图法,通过实验测得弓网电弧的光谱信息,进而计算电弧通道的温度。结果表明,由于单次电弧持续时间短又受弓网相对运动的影响,其温度并不很高,且电弧温度随着电弧持续时间的增加而增加。采用盲目反卷积的方法求解307.92 nm谱线的Stark展宽,再根据Stark展宽求得电弧的电子密度,结果表明弓网电弧通道的电子密度和其他种类电弧电子密度在同一数量级上;说明电弧引起的粒子电离效应明显。由此可知光谱法在电弧温度及电弧电离特性的分析中是较为方便和准确的。  相似文献   

10.
吴钦义  张和琪 《物理学报》1959,15(4):210-218
把直流电弧垂直方向的弧柱用二片表面镀铝的反射镜所组成的换向镜横向成象于摄谱仪狭缝,摄取弧柱中部圆截面的光谱。沿谱线的全长测量其强度分布。再利用Λbel数学解式用图解积分法解出谱线相对辐射密度的径向分布。这样所得到的实验数据从理论上可以计算出:1)激发温度;2)平均电离度;3)各元素的电离度;4)电子密度;5)弧柱中各元素相对浓度等的径向分布。实验结果说明:1)在作者以氧化锌为基体的电弧中,电弧形成聚心结构,由弧心向外激发温度降低甚速,不象一般文献所述直流电弧弧心附近有着宽平的温度分布。2)弧心附近(约1/  相似文献   

11.
在电弧等离子体的光谱诊断中,标准温度法测温原理与目前先进的图像传感技术相结合,通过特征谱图像完成电弧全场温度信息采集,因其良好的时、空分辨率而被广泛应用于电弧温度测量。但是谱线的发射系数与等离子体温度不是单调变化关系,传统标准温度法选取一条ArⅠ谱线完成对电弧等离子体的测量,在电弧内部的高温电离区域产生谱线辐射强度降低的现象,需要人为判定电弧不同位置所处的温度区间才能完成温度的计算,整个过程无法通过软件自主完成。针对此问题,根据电弧等离子体的局部热力学平衡条件,探索一种基于双特征谱线的标准温度法测温原理,通过融合电弧在外层低温区域聚集的Ar原子发出的ArⅠ谱线发射系数场,和在高温区域的Ar一次电离离子所发出的ArⅡ特征谱线发射系数场,将达到ArⅠ谱线标准温度的位置处的ArⅡ谱线发射系数作为电弧不同温度区域的判定依据,完成电弧等离子体高温区域的自动判别,继而应用ArⅠ谱线发射系数与温度对应关系在电弧高、低温区域分别计算电弧温度,消除单一的ArⅠ谱线发射系数场暗区给计算带来的不利影响;设计并搭建了一种镜前分幅采集系统,其中分光镜将弧光等能量分成两束,利用两组反射镜和窄带滤光片建立起两路光学通道,使CMOS在一次曝光中完成两组电弧特征谱图像的采集,并且两幅图像的采集时刻、焦距、光圈等拍摄参数完全一致,达到良好的时间、空间一致性,从而减小谱线融合时误差的输出,满足了原位获取两组电弧特征谱图像的需求;为验证测量系统可行性以及后期的电弧图像提取,以黑白棋盘为标靶,用Harris算子对系统采集的图像进行扫描,根据角点坐标证明系统所采集的两幅图像具有良好的一致性,并且据此将两幅图像做归一化处理,以便后期的电弧特征谱图像的提取;通过假设所测电弧等离子具有轴对称属性,以CMOS所采集的特征谱图像亮度信息作为电弧发射系数场在不同角度下的投影依据,经过中值滤波降噪后,利用ML-EM迭代重建算法求解电弧的三维发射系数分布。实验中,选择受自吸收效应影响较小的ArⅠ696.5 nm谱线和ArⅡ480.6 nm谱线为测量目标,并且在696.5 nm谱线的光通路中加入OD0.4的中性减光片,使两幅特征谱图像的最高亮度值保持一致。选取150A焊接等离子弧为测量对象,经ML-EM法三维还原后,将两条谱线发射系数场等像素融合,在ArⅠ谱线发射系数达到最大值的像素点位置处,ArⅡ谱线发射系数达到εrp,判定ArⅡ谱线发射系数大于εrp的像素点位置为电弧高温区域,其余位置为低温区域,最终在不同温度区域自动完成焊接等离子弧的温度计算。实验结果表明696.5 nm谱线和480.6 nm谱线发射系数场融合后可以自动识别电弧高温区域,继而完成电弧等离子体的自动测量,为电弧温度实时监测的实现提供更多可能。  相似文献   

12.
脉冲TIG焊由于其优越的特性而广泛应用于工业中,准确测量电弧温度对分析焊接过程有重要意义。论文基于光谱学理论计算了氩元素的粒子数密度与温度之间的关系曲线,计算了794.8 nm氩原子谱线的发射系数与温度之间的关系曲线,利用高速摄影获得了794.8 nm特征谱的电弧图像,根据Abel变换和标准温度法计算了脉冲TIG焊峰值时刻和基值时刻的电弧温度场分布。  相似文献   

13.
多丝熔化极气体保护焊中,由于电弧间的相互干扰,电弧工作状态不稳定,进而影响焊接过程稳定性和焊接质量。基于Boltzmann作图法测量电子温度场和Stark展宽法研究了多丝工作条件下电弧的电子温度分布和电子密度分布,结合高速摄影获得的定量化结果,给出电弧间干扰的定量化分析。光谱诊断结果表明双丝情况下,当加入电弧工作电流大于原电弧时,原电弧电子温度中心向新加入电弧稳定偏移,而且偏向新电弧一侧电子密度明显增加,而新电弧工作电流等于原电弧时,电弧电子温度和电子密度分布都反映出原电弧工作状态不稳定。三丝情况,由于加入第三根电弧,导致中间电弧电子温度分布变得复杂,而其电子密度分布接近于单丝工作情况。  相似文献   

14.
计算了常压下3 000~25 000 K范围内熔化极气体保护焊(GMAW)保护气体Ar,CO2,82%Ar-18%CO2及其与Fe蒸汽的混合物的平衡成分。上述气体被看作一种Ar-CO2-Fe等离子体,等离子体中的39种粒子被分为5种主元粒子和34种非主元粒子。根据化学方程,非主元粒子由主元粒子表示以减少未知数的个数和求解量,再利用牛顿迭代法对平衡方程进行求解,最终实现了成分求解。计算结果表明,Ar气随着温度升高依次发生一次电离和二次电离,CO2气体除了在高温时发生原子电离外,在低温时(T<8 000 K)还存在CO2,O2,CO等分子的解离,82%Ar-18%CO2混合气则既有解离又有电离。Fe的加入会增加等离子体的电子密度,特别是在15 000 K以下。等离子体成分的确定为GMAW电弧等离子体辐射属性计算以及电弧中Fe蒸汽浓度的光谱测定奠定了基础。  相似文献   

15.
利用光谱诊断方法结合高速摄像研究所提出的药芯焊丝的填丝TIG焊接新工艺的电弧特性,借助高速摄像研究药芯焊丝TIG焊的熔滴过渡方式;通过对焊接电弧进行光谱采集点扫描,对采集的谱线进行元素标定,以药粉中活性元素K和Na作为追踪目标,统计得到电弧中药粉成分的分布范围;并利用Boltzmann图法计算TIG焊电弧的温度场分布,分析了熔滴过渡方式对电弧温度场分布的影响。研究结果表明,通过调整丝极间距,得到药芯焊丝TIG焊的三种典型的熔滴过渡方式:滴状过渡(2 mm)、渣柱过渡(5 mm)和搭桥过渡(7 mm)。药粉中的活性元素K和Na等集中分布在熔池上方的电弧空间,且其分布受丝极间距的影响,丝极间距越小其分布越靠近钨极,容易造成对钨极的污染。不填丝TIG焊的电弧温度分布呈钟罩形,等温线关于钨极轴线近似对称分布;与不填丝TIG焊相比,药芯焊丝TIG焊的电弧温度场受熔滴过渡的影响发生了不同程度的扭曲,滴状过渡的电弧温度场扭曲严重,焊接过程中飞溅较大;相比于滴状过渡,渣柱过渡和搭桥过渡的电弧温度场扭曲程度较小且焊接过程稳定,适合该TIG焊方法的使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号