首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We report a stable high power and high beam quality diode-side-pumped CW green laser from intracavity frequency doubled Nd:YAG laser with LBO crystal. By using a advanced resonator, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously, which are favorable for high power and high beam quality CW green laser generation. The green laser delivered a maximum 532 nm output power of 40 W. The corresponding optical-to-optical conversion efficiency and electrical-to-optical conversion efficiency were 8.6% and 5.0%, respectively. Under 532 nm output power of 34 W, the beam quality factor was measured to be 1.6.  相似文献   

2.
A modified spectral beam combining(SBC) approach based on double asymmetrical filters was proposed. By using this scheme, the high-order lateral modes at the edge of the far-field pattern can be suppressed in the external cavity, and the beam quality in the slow-axis direction was improved from 16.1 to 13.4 compared to the conventional SBC. In the meanwhile, the electrical-to-optical efficiency from the modified SBC was more than 40% with an output power of 34.1 W, which is similar to that of the conventional SBC.  相似文献   

3.
Continuous wave power of more than 400 mW at 488 nm has been generated by frequency doubling of 2.45 W at 976 nm obtained from a distributed Bragg reflector tapered diode laser. This results in a wavelength conversion efficiency of 16.5% and an electrical-to-optical efficiency of more than 4.5%. We used a 50 mm long periodically poled MgO:LiNbO3 bulk crystal in single-pass configuration for the second harmonic generation. This is to the author’s knowledge the highest output power and the highest wavelength conversion efficiency at 488 nm generated by a monolithic semiconductor laser device in single pass configuration with a bulk crystal. A deviation from the quadratic dependency of the frequency doubling is explained by the decrease of the beam quality of the fundamental wave.  相似文献   

4.
An efficient high-energy, high-peak-power eye-safe optical parametric oscillator (OPO) at 1536 nm based on a noncritically phase-matched KTA crystal pumped by a quasi-cw diode side-pumped electro-optic Q-switched Nd:YAG laser is presented. The maximum output energy is 74.9 mJ, corresponding to an optical-to-optical conversion efficiency of 12.14% and an electrical-to-optical conversion efficiency of 4.73%. The pulse width (FWHM) is about 3.5 ns with a peak power of 21.4 MW. Moreover, the maximum electrical-to-optical conversion efficiency and optical-to-optical conversion efficiency are up to 4.94% and 15.6%, respectively.  相似文献   

5.
We present a 532 nm-pumped singly-resonant cw optical parametric oscillator based on MgO-doped PPLN with a minimum threshold pump power of 0.3 W. The OPO with a two-mirror standing-wave cavity is optimized by using a tunable diode laser on the path of the resonant signal beam. The maximum output power is 200 mW at an idler wavelength near 1330 nm at a pump power of 2 W. We report the degradation of the output power and beam characteristics at high pump power indicating a strong thermal lensing in the crystal. The continuous tuning range of the OPO is measured to be 800 MHz which is close to 90% of the free spectral range of the OPO cavity.  相似文献   

6.
An efficient single-frequency continuous-wave Nd:YVO4 ring laser pumped at 880 nm is presented. With compact four-mirror ring cavity and optical isolator, we obtained an output power of 14.56 W at 1064 nm, corresponding to a slope efficiency of 61.7% and an optical-to-optical efficiency of 58.4% with respect to the absorbed pump power. The stability of the output power was better than ±0.5% over two hours. At the same time, a beam quality factor of M 2≈1.2 was measured and the line width of the longitudinal mode was about 25 MHz. To the best of our knowledge, this is the highest slope efficiency and optical-to-optical efficiency in single-frequency Nd:YVO4 ring laser.  相似文献   

7.
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6 W was obtained with an optical-to-optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M2 beam quality factor of 18.7 was obtained at the maximum laser output power.  相似文献   

8.
Singly 0.5 at.% Ho doped crystals of YLiF4 (YLF) and LuLiF4 (LLF) are studied under identical pump conditions in continuous-wave (CW) and Q-switched operation. Longitudinal end-pumped CW laser performance shows Ho:LLF to have a slightly lower threshold and a slightly higher slope efficiency with respect to absorbed pump power than Ho:YLF. Both lasers were operated on π-polarization. At a cavity output coupling of 20% and a crystal length of 30 mm, the Ho:LLF (Ho:YLF) laser yielded 18.8 W (18 W) of CW output at a wavelength of 2067.8 nm (2064.0 nm) for 41.4 W (42.2 W) of absorbed pump power with a slope efficiency of 67.1% (65.6%) and an optical-to-optical efficiency of 45.4% (42.6%) with respect to absorbed pump power. With the same output coupling and a crystal length of 40 mm, the Ho:LLF (Ho:YLF) laser yielded 20.5 W (18.1 W) of CW output at a wavelength of 2067.7 nm (2064.3 nm) for 51.5 W (50.0 W) of absorbed pump power with a slope efficiency of 58.4% (55.4%) and an optical-to-optical efficiency of 39.8 (36.1%) with respect to absorbed pump power. The influence of the temperature of the cooling mount on CW laser performance was studied and showed very similar results for both laser materials. At full pump power, a slope of −155 mW/°C (−149 mW/°C) was observed for the Ho:LLF (Ho:YLF) laser with a crystal length of 30 mm. In Q-switched operation, the Ho:LLF (Ho:YLF) laser produced 37 mJ (38.5 mJ) at a repetition rate of 100 Hz with a pulse duration of 38 ns (35 ns) at a wavelength of 2053.1 nm (2050.2 nm) with a slope efficiency of 30.3% (31%) and an optical-to-optical efficiency of 14.2% (13.9%) with respect to absorbed pump power. The beam quality was nearly diffraction limited (M 2<1.1).  相似文献   

9.
A master oscillator power amplifier (MOPA) system in which the output from an end-pumped Nd:YAG oscillator cavity dumped at 500 kHz is scaled up by a four-stage Nd:YVO4 amplifier is reported. Decrease in extraction efficiency of the amplifier chain with crystals different from that in the oscillator was analyzed. With the 5.4 W seed output, 118 W of power was extracted from the amplifier chain at the pump power of 345 W, with an extraction efficiency of 34.2% and an overall optical–optical efficiency of 30.9% for the MOPA system. The beam quality factors were measured as M x 2=1.45 and M y 2=1.59 in two orthogonal directions, respectively.  相似文献   

10.
High-power and high beam quality continuous-wave (CW) Nd:GdVO4 lasers operating at 1.34 μm were experimentally demonstrated. The lasers consisted of either one or two crystals, which were both end-pumped by high-power fiber-coupled diode lasers. With one crystal, the maximum CW output power generated was 8.4 W. When two crystals were used, a maximum output power of 15.7 W was achieved with the incident pump power of 76.2 W, showing a slope efficiency of 26.2% and an optical-to-optical efficiency of 20.6%. The beam divergence at an output power of 15 W was measured to be about two times that of the diffraction limit.  相似文献   

11.
Different measures to improve the modulation efficiency of a distributed Bragg reflector tapered diode laser emitting at 1060 nm were investigated. Due to the 6-mm long cavity, the device reached an output power of 10 W with a nearly diffraction-limited beam quality. The input currents to the ridge-waveguide (RW) and tapered gain-region sections can be independently controlled. This allows a low-current modulation of the optical output power in the Watt range. Under optimized quasi-static conditions the power could be modulated between 0.2 and 3.1 W (4.8 W) by a variation of the RW current between 0 and 50 mA (350 mA). Due to the integrated 6th order surface Bragg grating the emission wavelength remains within the spectral range of 80 pm.  相似文献   

12.
A quasi-three-level Yb-doped single-mode fiber laser at 980 nm by adopting two 0° fiber ends as cavity mirrors generated a total output power of 1.32 W with the slope efficiency of 75.3%. The fiber length was 36.5 cm close to the optimal theoretical fiber length. The corresponding optical conversion efficiency was 66% from the incident pump power at 946 nm to the laser power at 980 nm. Through frequency-doubling with BIBO crystal, a total output power of 15 mW at 490.8 nm was obtained.  相似文献   

13.
A linear and non-linear theory of the orotron with an electron beam inclined with respect to the surface of a periodic structure is presented. The beam inclination provides the possibility of the effective interaction of all particles of thick electron beam with slow evanescent harmonic of the cavity mode. On the basis of obtained analytical expression for the orotron starting current, the possibility to increase the device frequency up to 600 GHz is discussed. According to numerical simulations, the inclination of the beam allows increasing significantly both the electron efficiency and the output power of the device. The project of low-voltage orotron with the operating frequency of 100 GHz and output power of 10 W is proposed.  相似文献   

14.
The experimental results of a high-power tunable mid-IR laser are presented. The optical parametric oscillator (OPO) with a 3-mm-thick PPMgCLN crystal was pumped by a 1.064 μm pulse laser. When the pump power of the 1.064 μm laser was 151 W at 10 kHz, and the operating temperature of the PPMgCLN with 5% MgO doping was 100°C, average output power of 23.7 W at 3.91 μm was obtained with a slope efficiency of 18.2% for the idler resonant OPO. The variation of the 3.91 μm output power was about ±4% in 10 min continuous operation. The beam quality factor M 2 was less than 2.6. The average output power of 27.4 W at 3.91 μm was also obtained with 151 W pump power and the slope efficiency of 20.9% for the signal resonant OPO by changing the coating parameters of the OPO cavity mirrors. The mid-IR wavelength tunability of 3.7–4.0 μm can be achieved by adjusting the temperature of a 29 μm period PPMgCLN crystal from 200 to 30°C.  相似文献   

15.
An external cavity using a binary phase grating has been developed to achieve coherent combining of five quantum-cascade lasers emitting at 4.65 μm. The grating phase profile is designed to combine five beams of equal intensities into a single beam with a good efficiency (~75%). The performances of this cavity concerning output power, stability, combining efficiency and beam quality are detailed. We report a CW combining efficiency of 66% corresponding to an output power of ~0.5 W with a good beam quality (M(2)<1.6).  相似文献   

16.
为了获得高效率多波段激光输出,通过高重复频率驱动声光调Q技术和LD侧面泵浦技术,获得高功率高重频窄脉宽1.06 m激光输出。利用起偏器件获得垂直和水平两束1.06 m线偏振光,一束垂直线偏振光泵浦非线性晶体周期极化钽酸锂(PPLT),实现1.46 m与3.9 m激光输出后与另一束1.06 m水平线偏振光合束,实现三波段共轴激光输出。在电源输入电流35 A、调Q驱动频率10 kHz的条件下,获得140 W的1.06 m激光。分束后泵浦PPLT获得最高功率为6.3 W的3.9 m和8.6 W的1.46 m激光,差频转化效率为21.3%。试验结果表明:通过高重频声光调Q技术和LD侧面泵浦技术,可以实现高重频窄脉宽1.06 m光输出,泵浦PPLT可获3.9 m和1.46 m激光输出。  相似文献   

17.
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2 mm,单个发光单元宽度为100 μm,发光单元周期为500 μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50 W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400 μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195 W,光纤端面功率密度达到1.55×105 W/cm2.  相似文献   

18.
Brightness enhancement in an external cavity diamond Raman laser designed for high power conversion of a neodymium (1064 nm) laser to the eye‐safe spectral region is reported. Using a multimode input beam pulsed at 36 kHz pulse repetition frequency, 16.2 W with 40% overall conversion efficiency was obtained at the second Stokes wavelength of 1485 nm. The output beam had a quality factor of which is a factor of 2.7 times lower than that of the input beam, resulting in a higher overall brightness. The output power, brightness, and brightness enhancement obtained represent significant advances in performance for Raman lasers as well as other competing kHz‐pulsed eye‐safe technologies.  相似文献   

19.
An efficient eye-safe GTR-KTP IOPO with the shared cavity configuration and excited by a diode-end-pumped composite Nd:YAG/Cr4+:YAG laser was demonstrated. Under the incident LD power of 8.4 W, the maximum average output power of 900 mW at 1572 nm was obtained with the T=33% output coupler, corresponding to a diode-to-signal conversion efficiency of 10.7%. The corresponding signal pulse width and repetition rate were respectively 2.2 ns and 12 kHz, with the peak power and single pulse energy estimated to be 34.1 kW and 75 μJ, respectively. The instability of the average signal output power over hours-long operation was found to be 2.0%. As for the common KTP IOPO at the same pump condition and cavity design, a lower average output power of 640 mW with a longer pulse width of 4.6 ns was obtained. The corresponding diode-to-signal conversion efficiency was reduced by 28.8% compared with that obtained in GTR-KTP IOPO. A theoretical model for the compact GTR-KTP IOPO was also presented in this paper. Theoretical analysis on the pulse characteristics of the signal was performed, which showed a good agreement with that obtained experimentally.  相似文献   

20.
High-power continuous wave green radiation has been generated by means of type-II phase-matched frequency doubling in a KTP crystal located in a simple linear cavity incorporating a diode side-pumped Nd:YAG laser module. The cavity was designed to make the fundamental beam radius at the KTP crystal smaller than that at the gain medium, as is required for obtaining large mode volume in Nd:YAG crystal and realizing efficient CW intracavity frequency doubling. Output power of 51.2 W is obtained in the experiment with a diode-to-green optical conversion efficiency of 10.3%. The M2-parameters of the laser are measured at different output powers. For the output power of about 47 W, the power fluctuation is measured less than 1%. The experimental results show that the continuous wave green laser system using this simple linear cavity offers good laser performance and output stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号