首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Quantum interference effects in rings provide suitable means for controlling spin at mesoscopic scales. Here we apply such a control mechanism to the spin dependent transport in a one-dimensional Aharonov-Bohm (AB) ring patterned in two-dimensional electron gases (2DEGs) symmetrically coupled to two leads. We investigate the ballistic conductance in the presence of an artificial crystal, which is made up of 5 quantum dots. The study is essentially based on the natural spinorbit interactions, due to the quantum well potential that confines electrons in the 2DEG. We focus on single-channel transport and solve for the spin polarization of the current. As an important consequence of the presence of spin splitting, we find the occurrence of spin dependent current oscillations. The presence of lattice can be useful to improve the spin filtering capability of the QR. In fact modulating both the geometry of the dots and the strength of the tunnel barriers between them it is now possible to obtain well defined spin-dependent resonances allowing polarized transport. The presence of isolated conductance peak is useful in order to improve the efficiency of the spin filtering also at non zero temperatures.  相似文献   

2.
We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.  相似文献   

3.
黄睿  吴绍全  闫从华 《计算物理》2011,28(1):131-137
借助单杂质Anderson模型哈密顿量,及利用格林函数和运动方程等理论,研究旁耦合于介观环和铁磁电极的量子点系统中的极化输运特性.结果表明,通过调节点-环耦合强度、铁磁电极中的极化强度、磁矩相对取向及温度等,均能实现控制体系中自旋极化电流的目的,达到自旋阀效应.为此系统作为一种新的自旋电子材料提供理论依据.  相似文献   

4.
Spin related conductance and polarization via an open ballistic quantum nanoringconnected to one input lead and two output ones are studied by considering the Rashbaeffect based on the transfer matrix method. Our probes show that controlling on Rashbastrength leads to 100 percent spin polarization while we have high efficiency for thesystem. In addition, it is possible to design the position of input and output leads insuch a way as to optimize the system to work as a spin filtering or spin switching nanodevice. Also, this apparatus can work as a Stern-Gerlach tool which can be used in someimportant practical nano-industrial applications. By controlling on Rashba strength in aspecial design of two output lead positions, it is possible to divide the input chargecurrent into any output ones while the partial output charge current has substantial valuein one of two output leads and it is reduced in the other one simultaneously. Bycontrolling on Rashba strength in a special design of output lead positions, the spinconductance can attain a considerable value in one output lead despite an insignificantvalue in the other one simultaneously.  相似文献   

5.
迟锋  孙连亮  黄玲  赵佳 《中国物理 B》2011,20(1):17303-017303
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin--orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.  相似文献   

6.
We study current fluctuations in an interacting three-terminal quantum dot with ferromagnetic leads. For appropriately polarized contacts, the transport through the dot is governed by dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events not present in the paramagnetic case. This leads, for instance, to positive zero-frequency cross correlations of the currents in the output leads even in the absence of spin accumulation on the dot. We include the influence of spin-flip scattering and identify favorable conditions for the experimental observation of this effect with respect to polarization of the contacts and tunneling rates.  相似文献   

7.
姚建明  杨翀 《物理学报》2009,58(5):3390-3396
利用紧束缚近似和格林函数方法,研究了AB效应和AB环对电子自旋输运的影响.计算表明,当在AB环的不同位置上连接相同或不同属性的输出端时,在一些能量范围内,由不同的输出端所输出的自旋流的方向是相反的;当固定入射电子的能量时,在同一磁通范围,从两个输出端输出的自旋流属性也是相反的.从而,可以通过控制AB环的结构和环内的磁通在输出端得到不同属性的自旋流. 关键词: 自旋极化输运 量子点 极化率 自旋流  相似文献   

8.
We report a theoretical study on generation of a spin polarized charge current with arbitrary spin polarization, including the fully-spin-polarized current. In a two-terminal mesoscopic ring device, the Rashba spin-orbit coupling (RSOC) is considered as well as a microwave field applied on one of arms of the ring. It is shown that at zero external bias a spin current can be produced in addition to the usual charge current pumped by the microwave field, which is attributed to the the quantum interference effect of the RSOC induced spin precession phase. By varying the system parameters such as the microwave frequency and the RSOC strength, not only the magnitude but also the direction of the spin current can be efficiently controlled, moreover, the spin-polarization degree of the charge current can readily be tuned by these system parameters in the range [-1,1]. Since all the parameters can be controlled electrically in our study, the proposed device may shed light on the possibility of an all-electrical generation and tuning of a spin-polarized current in the field of the spintronics.  相似文献   

9.
An optical ring cavity filled with an isotropic medium is driven externally. Two waves of the same frequency but of different polarization are coupled nonlinearly by a Kerr type interaction. It is theoretically shown that the symmetry of the linear polarized input field may be broken spontaneously. Beyond an intensity threshold the output field gets elliptic polarization. Right and left elliptic states are stable. The system shows polarization bistability.  相似文献   

10.
Conversion of spin into directed electric current in quantum wells   总被引:1,自引:0,他引:1  
A nonequilibrium population of spin-up and spin-down states in quantum well structures has been achieved applying circularly polarized radiation. The spin polarization results in a directed motion of free carriers in the plane of a quantum well perpendicular to the direction of light propagation. Because of the spin selection rules the direction of the current is determined by the helicity of the light and can be reversed by switching the helicity from right to left handed. A microscopic model is presented which describes the origin of the photon helicity driven current. The model suggests that the system behaves as a battery which generates a spin polarized current.  相似文献   

11.
王瑞  孔令民  周运清  张存喜  邢志勇 《中国物理 B》2010,19(12):127202-127202
In this paper the quantum transport in a dot-array coupled with an Aharonov–Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit Φ0. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization.  相似文献   

12.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

13.
Addressing the feasibility of quantum communication with electrons we consider entangled spin states of electrons in a double-dot which is weakly coupled to leads. We show that the entanglement of two electrons in the double-dot can be detected in mesoscopic transport and noise measurements. In the Coulomb blockade and cotunneling regime the singlet and triplet states lead to phase-coherent current and noise contributions of opposite signs and to Aharonov-Bohm and Berry phase oscillations. These oscillations are a genuine two-particle effect and provide a direct measure of nonlocality in entangled states. We show that the ratio of zero-frequency noise to current is equal to the electron charge.  相似文献   

14.
We study the spin-polarized transport and Fano resonance in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot, where the dot is irradiated by continuous circularly polarized light. Compared with the conventional Fano form, the resonance line shape is found to be deformed by the interplay between the external irradiation and the Coulomb repulsion. The Fano resonance peaks are split due to the shift of the effective energy level in the dot by Rabi oscillation of electron-heavy hole pairs. The direction and magnitude of spin current polarization can be modulated by the device parameters. Furthermore, the direct tunneling between two leads can induce a sharp sign reversal of spin polarization, the system thus operates as a rectifier for spin current polarization.  相似文献   

15.
仲氢诱导核极化(PHIP)技术能极大地增强核磁共振(NMR)信号的灵敏度,已被应用于磁共振成像、原位化学反应监测等领域.除了不断提高不同分子极化后的灵敏度外,延长和保存高极化度状态对PHIP技术的应用也至关重要,其中将极化后的状态制备成核自旋单重态是目前被研究较多的一种方法.本文以能被PHIP技术极化的己烯分子为研究对象,通过设计优化控制脉冲,对分子中的一个五自旋体系进行操控,制备了多种核自旋单重态,结果表明:己烯分子的碳-碳双键上存在三种不同的核自旋单重态,它们的寿命均长于仲氢极化后产生的初始态的寿命,可以作为延缓极化度衰减的一种中间态;通过对比单重态的寿命与相应自旋的纵向弛豫时间发现,将极化后己烯的状态转化为纵向磁化可能也是一种保存极化度的有效方法.  相似文献   

16.
We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dot-ferromagnet system. We have derived the spin polarized current noise matrix, from which we can derive general expressions of shot noises associated with charge and spin currents. The spin and charge currents are intimately related to the polarization angles, and they behave quite differently from each other. The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably. There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature, and it is asymmetric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current, since the spin current components Ixs, Iys oscillate sinusoidally with the frequency ?? in the ?th lead, while the Izs component of spin current is independent of time.  相似文献   

17.
极化自由度对分束器出射光场的量子相干性影响的研究   总被引:1,自引:0,他引:1  
我们在讨论粒子数态光场在分束器上干涉后得到的输出态的量子相干性时,考虑了入射场的极化自由度.利用campos[1]等人提出的量子分束器的SU(2)理论模型,计算得到了输出光场所处状态的表达式.进而讨论了光场在两个不同的入射空间模上极化方向对两个输出空间模上光场二阶量子干涉度的影响.  相似文献   

18.
The dynamics of a nonequilibrium spin system dominated by collisions preserving the total quasimomentum of the interacting electrons and quasiparticles is considered. An analysis of the derived hydrodynamic equations shows that weakly attenuated spin-polarization waves associated with an oscillating drift current can exist in a magnetically inhomogeneous conducting ring. Spin-polarized transport in a ballistic regime of wave propagation through a conductor is also considered, and a simple method is proposed for distinguishing these waves from spin and current oscillations that develop in the hydrodynamic regime. It is shown that a potential difference arises between the leads of an open nonuniformly spin-polarized conductor as a manifestation of spin polarization of electron density. This spin-mediated electrical phenomenon occurs in both hydrodynamic and diffusive limits.  相似文献   

19.
《中国物理 B》2021,30(5):57201-057201
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin–orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spinHall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin–orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号