首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron–photon coupling strength on spin-dependent heat and thermoelectric currents are presented.  相似文献   

2.
The photon helicity may be mapped to a spin-1/2, whereby we put forward an intrinsic interaction between a polarized light beam as a "photon spin current" and a pure spin current in a semiconductor, which arises from the spin-orbit coupling in valence bands as a pure relativity effect without involving the Rashba or the Dresselhaus effect due to inversion asymmetries. The interaction leads to linear and circular optical birefringence, which are similar to the Voigt effect and the Faraday rotation in magneto-optics but nevertheless involve no net magnetization. The birefringence effects provide a direct, nondemolition measurement of pure spin currents.  相似文献   

3.
张林  汪军 《中国物理 B》2011,20(12):127203-127203
We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.  相似文献   

4.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

5.
The intrinsic spin Hall effect on spin accumulation and electric conductance in a diffusive regime of a 2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin polarization near the flanks of the strip, as well as the electric current in the longitudinal direction, exhibit damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit interaction. Cubic terms of this interaction are crucial for spin accumulation near the edges. As expected, no effect on the spin accumulation and electric conductance have been found in case of Rashba spin-orbit interaction.  相似文献   

6.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

7.
Non-equilibrium spin accumulation in two-dimensional domain wall (DW) in the presence of external electric field and Rashba type spin-orbit coupling within the Boltzmann semi-classical model is investigated. Transport and relaxation of spin polarized current in the DW is governed by spin-flip rates which are determined by the Rashba interaction and magnetic impurities. Numerical results show that at low impurity densities and nonadiabatic transport regimes, the Rashba interaction significantly enhances spin polarization of conduction electrons inside the DW.  相似文献   

8.
In this work, via introducing local Rashba spin-orbit interaction in a four-terminal quantum-dot (QD) ring, we show that the spin bias in the transverse terminals induces apparent charge currents in the longitudinal terminals, accompanied by the similar magnitude and opposite directions of them. The reason is that the Rashba interaction destroys the space-reversal symmetry of this structure and causes the spin dependence of the quantum interference. Then the opposite-spin currents driven by the spin bias present different magnitudes, which gives rise to the emergence of finite charge currents in the longitudinal terminals. Via these results, we suggest that the spin bias can be measured by observing the longitudinal charge currents, which provides an electrical but practical scheme to detect the spin bias (or spin current).  相似文献   

9.
The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(omega) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to omega2. At nonzero temperatures the coupling to the phonons yields an imaginary term proportional to omega. The interference also yields persistent spin currents at thermal equilibrium, at E=0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other.  相似文献   

10.
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.  相似文献   

11.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

12.
We theoretically investigate the electron transport in a periodic non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit effects. We show that the transport properties obviously depend on the number of periods and the large spin polarization can be achieved in such a structure. We also show that for m>1, the resonance splitting occurs in the transmission curves of both spin-up and spin-down electrons when the transmission curves are plotted as a function of the electron energy or the well width.  相似文献   

13.
The photo-induced direct current in a system consisting of a one-dimensional Rashba ring with conductors connected to it is calculated. The current is produced under the action of circularly polarized radiation incident on the ring in the presence of Rashba spin—orbit coupling. The charge and spin currents in conductors are expressed in terms of the coefficients of the electron transmission through the ring with inelastic interaction with radiation taken into account. It is shown that the spin current is a complex function of the magnetic flux through the ring, of the radiation frequency, and the spin—orbit coupling constant.  相似文献   

14.
We investigate the properties of persistent charge current driven by magnetic flux in aquasi-periodic mesoscopic Fibonacci ring with Rashba and Dresselhaus spin-orbitinteractions. Within a tight-binding framework we work out individual state currentstogether with net current based on second-quantized approach. A significant enhancement ofcurrent is observed in presence of spin-orbit coupling and sometimes it becomes orders ofmagnitude higher compared to the spin-orbit interaction free Fibonacci ring. We alsoestablish a scaling relation of persistent current with ring size, associated with theFibonacci generation, from which one can directly estimate current for any arbitrary flux,even in presence of spin-orbit interaction, without doing numerical simulation. Thepresent analysis indeed gives a unique opportunity of determining persistent current andhas not been discussed so far.  相似文献   

15.
The spin-dependent electron transport is numerically studied in a nonmagnetic nanostructure in the presence of both Dresselhaus and Rashba spin-orbit interactions. It is shown that the large spin polarization can be achieved in such a structure mainly due to the Rashba spin-orbit term induced splitting of the resonant level. It is also shown that the spin polarization strongly depends on the well width and the thickness of the middle barrier as well as the height of the middle barrier.  相似文献   

16.
Based on the Noether's theorem, we develop systematically and rigorously the spin-dependent formulation of the conservation laws. The effect of the electronic polarization due to the spin-orbit coupling is included in the Maxwell equations. The polarization is related to the antisymmetric components of spin current, and it provides a possibility to measure the spin current directly. The variances of spin and orbit angular momentum currents imply a torque on the "electric dipole" associated with the moving electron. The dependencies of the torque on the polarization and the force on the motions of spin-polarized electrons in a two-dimensional electron gas with the Rashba spin-orbit coupling are discussed.  相似文献   

17.
Xing-Tao An 《Physics letters. A》2008,372(8):1313-1318
Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers.  相似文献   

18.
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.  相似文献   

19.
In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known.  相似文献   

20.
刘平  熊诗杰 《中国物理 B》2009,18(12):5414-5419
The influence of electron--phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin--orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positions; unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号