首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Densely packed LaCoO3 nanowires of the rare-earth perovskite-type composite oxide were synthesized within a porous anodic aluminum oxide (AAO) template by means of the sol–gel method using nitrate as raw the material and citric acid as the chelating agent. The results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the LaCoO3 nanowires possessed a uniform length and diameter, which were controlled by the thickness and the pore diameter of the applied AAO template, respectively. The results of X-ray diffraction (XRD) and the selected area electron diffraction (SAED) indicated that the LaCoO3 nanowires had a rhombohedral perovskite-type crystal structure. Furthermore, X-ray photoelectron spectroscopy (XPS) demonstrated that LaCoO3 nanowires were formed. Finally, the formation mechanism of nanowires was also discussed. PACS 61.66.Fn; 61.46.-W; 81.20.Fw  相似文献   

2.
Zn2SnO4 (ZTO) nanowires with a unique dendritic nanostructure were synthesized via a simple one-step thermal evaporation and condensation process. The morphology and microstructure of the ZTO nanodendrite have been investigated by means of field emission scanning electron microscopy (SEM), x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). SEM observation revealed the formation of branched nanostructures and showed that each branch exhibited a unique periodic structure formed by a row of overlaid rhombohedra of ZTO nanocrystals along the axis of the nanobranch. HRTEM studies displayed that the branches grew homoepitaxially as single-crystalline nanowires from the ZTO nanowire backbone. A possible growth model of the branched ZTO nanowires is discussed. To successfully prepare branched structures would provide an opportunity for both fundamental research and practical applications, such as three-dimensional nanoelectronics, and opto-electronic nanodevices.  相似文献   

3.
Isoelectronic (In, Al) doped gallium oxide nanowires have been grown by a vapour solidification process. XRD and TEM were used for their structural characterization. The morphology and optical properties of the In(Al)-doped Ga2O3 nanowires have been investigated by means of the secondary electrons and cathodoluminescence (CL) techniques in the SEM. Red and blue-UV emission bands appear as complex bands and their components are influenced by the presence of In or Al, leading to a blue-shift of the blue-UV band usually observed in undoped gallium oxide. These In and Al related changes in the luminescence features of doped Ga2O3 nanostructures are discussed.  相似文献   

4.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

5.
Two kinds of ferromagnetic SiC based nanowires with and without Ni catalyst were successfully synthesized by employing microwave heating method. The comprehensive characterizations and vibrating sample magnetometer (VSM) have been applied to investigate the micro-structures and magnetic properties of as-grown nanowires. For the nanowires synthesized without using Ni catalyst, the diameters and lengths are in the range of 20–60 nm and dozens of micrometers, respectively. Particularly, the results of transmission electron microscopy (TEM) show that the nanowires consist of SiC core and SiOx shell. The SiC/SiOx coaxial nanowires exhibit room-temperature ferromagnetism with saturation magnetization (Ms) of 0.2 emu/g. As to the nanowires obtained using Ni catalyst, the scanning electron microscopy (SEM) results indicate that the Ni catalyzed nanowires have a nano-particle attached on the tip and a uniform diameter of approximately 50 nm. The vapor-liquid-solid (VLS) growth mechanism can be used to explain the formation of the Ni catalyzed nanowires. The detection result of VSM indicates that the Ni catalyzed nanowires possess the paramagnetism and the ferromagnetism, simultaneously. The enhancement of the ferromagnetism, compared with the SiC/SiOx coaxial nanowires, could be attributed to the Ni2Si and NiSi phases.  相似文献   

6.
Sb2O3 nanowires with diameters of ∼233 nm and microspheres assembled by these nanowires were successfully synthesized by a simple poly-(vinylpyrrolidone) (PVP) assisted hydrothermal method. The morphologies, nano/microstructures and optical properties of the as-grown nanowires and microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectrum. It has been found that the experimental parameters, such as mineralizers, played crucial roles in the morphological control of Sb2O3 nanowires. The possible growth mechanism of microspheres has been proposed.  相似文献   

7.
Li  Shanying  Jiang  Yang  Wu  Di  Wang  Binbin  Zhang  Yugang  Li  Junwei  Liu  Xinmei  Zhong  Honghai  Chen  Lei  Jie  Jiansheng 《Applied Physics A: Materials Science & Processing》2011,102(2):469-475
Resonant tunneling is firstly found in twin p-type ZnTe nanowire field-effect transistors. The twin ZnTe nanowires are synthesized via the thermal evaporation process. X-ray diffraction and high-resolution transmission electron microscopy characterization indicate that the as-grown twin nanowire has a zinc-blende crystal structure with an integrated growth direction of [11-1]. The twin plane is (11-1) and the angle between the mirror symmetrical planes is 141°. The formation of twins is attributed to the surface tension from the eutectic liquid droplet. Field-effect transistors based on single ZnTe twin nanowire are constructed, the corresponding electrical measurements demonstrate that the twin nanowires have a p-type conductivity with a mobility (μ h ) of 0.11 cm2 V−1 S−1, and a carrier concentration (n h ) of 1.1×1017 cm−3. Significantly, the negative differential resistance with a peak-to-valley current ratio of about 1.3 is observed in p-type twin ZnTe nanowire field-effect transistors at room temperature. As the periodic barriers produced in the periodic twin interfaces can form multi-barrier and multi-well along one-dimensional direction. The multibarrier can be modulated under external electrical field. When the resonant condition is met, the space charge will be enhanced with the inherent feedback mechanism, and the resonant tunneling will occur.  相似文献   

8.
NiO nanowires with high aspect ratio and dispersive distribution have been synthesized by a hydrothermal reaction of NiCl2 with Na2C2O4 and H2O in the simultaneous presence of ethylene glycol (EG) and polyethylene glycol (PEG). Then the products were obtained by the subsequent annealing at 400 °C in air. The effect of –OH from EG and –O– from PEG in the formation of nanowires was discussed. And the gas sensing properties of the as-prepared NiO nanowires toward ethanol were investigated. A novel formation mechanism of nanowires was presented and the NiO nanowires were proved to have an excellent gas sensing performance.  相似文献   

9.
Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres.  相似文献   

10.
A method to prepare intermetallic composite coatings employing the cost-efficient electric arc spraying twin wires assistant with suitable heat treatment was developed. In this study, a Fe-Al composite coating was produced by spraying twin wires, i.e. a carbon steel wire as the anode and an aluminum wire as the cathode. The inter-deposited Fe-Al coating was transformed in-situ to Fe-Al intermetallic composite coating after a post annealing treatment. The effect of annealing treatment conditions on phase composition, microstructure and mechanical properties of the coating was investigated by using XRD, SEM, EDS and OM as well as microhardness tester. The results show that the desirable intermetallic phases such as Fe2Al5, FeAl and Fe3Al are obtained under the annealing condition. The main oxide in the coating is FeO which can partially transform to Fe3O4 up to the annealing condition.  相似文献   

11.
Growth and mechanism of titania nanowires   总被引:1,自引:0,他引:1  
Anatase and rutile-phase titania nanowires have been prepared via an efficient molten salt-assisted and novel pyrolysis route, respectively. The growth of anatase nanowires is parallel to [010] direction. The anatase titanium oxide nanowires are obtained by exchange reaction between Na2TiO3 and HCl, whereas the formation of rutile titania nanowires is conventional vapor-liquid-solid growth mechanism.  相似文献   

12.
陈文智  周少雄  陈金昌 《物理学报》1999,48(13):193-199
用双喷嘴坩埚制备了非晶态合金Fe78Si9B13和(FeNiCr)78(SiB)22的单层带材和复合带,并测量了两种合金的叠绕铁蕊和复合带铁蕊的热磁曲线和磁滞回线.对于两种合金的叠绕铁蕊,其磁滞回线呈峰腰型,类似于两种合金各自磁滞架线的平均值,但并不完全相同.对于复合带铁芯,其热磁曲线与两种合金热磁曲线的平均值基本重合,而磁滞回线不仅不再是蜂腰型,且非常扁平.叠绕铁芯和复合带铁芯磁滞回线的这种变化源于叠绕铁芯和复合带铁芯中的内应力.这种内应力产生的根本原因是两种材料热膨胀系数和磁致伸缩系数的差别. 关键词:  相似文献   

13.
The polypyrrole (PPy) nanowires are conducting 1D materials, which can significantly improve the electrical conductivity of the composites. A novel Li1.26Fe0.22Mn0.52O2 (LFMO) @ PPy nanowire composites were synthesized by simply ultrasonic dispersing LFMO and PPy nanowires in aqueous ethanol. The structure and morphology of pristine LFMO and LFMO@PPy are investigated by XRD, SEM, and TEM. The elemental mapping and FTIR results demonstrate the conductive network of PPy nanowires exists in the composites and the LFMO particles uniformly distribute on the PPy nanowires. LFMO combined with PPy nanowires exhibits better rate capability, higher capacity, coulombic efficiency, and cycleability than the pristine. The rate performance of composites with 10 wt% PPy nanowires shows the discharge capacities of 132.2 mAh/g and 98 mAh/g at 1C and 3C rate after 50 cycles, respectively. Electrochemical impedance spectroscopy test suggests that the conductive PPy nanowires can significantly decrease the charge-transfer resistance of LFMO. The composite with 10 wt% PPy nanowires shows a discharge capacity retention of 71% after 50 cycles at 1C, while the pristine sample only has 50% capacity retention.  相似文献   

14.
Large scale NdB6 nanowires have been successfully fabricated for the first time using a self-catalyst method with Nd powders and boron trichloride (BCl3) gas mixed with hydrogen and argon. X-ray diffraction, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to characterize the samples. Transmission electron microscopy (TEM) reveals that the NdB6 nanowires are single crystals with cubic structure. Our investigation forms part of a series of studies for finding comparatively inexpensive methods to prepare RB6 nanomaterials.  相似文献   

15.
BiOCl is a promising V-VI-VII-compound semiconductor with excellent optical and electrical properties, and has great potential applications in photo-catalysis, photoelectric, etc. We successfully synthesize BiOCl nanowire with a hierarchical structure by combining wet etch (top-down) with liquid phase crystal growth (bottom-up) process, opening a novel method to construct ordered bismuth-based nanostructures. The morphology and lattice structures of Bi nanowires, β-Bi2O3 nanowires and BiOCl nanowires with the hierarchical structure are investigated by scanning electron microscope (SEM) and transition electron microscope (TEM). The formation mechanism of such ordered BiOCl hierarchical structure is considered to mainly originate from the highly preferred growth, which is governed by the lattice match between (1 1 0) facet of BiOCl and (2 2 0) or (0 0 2) facet of β-Bi2O3. A schematic model is also illustrated to depict the formation process of the ordered BiOCl hierarchical structure. In addition, Raman properties of the BiOCl nanowire with the hierarchical structure are investigated deeply.  相似文献   

16.
Ordered Fe2O3 nanowire arrays embedded in anodic alumina membranes have been fabricated by Sol–gel electrophoretic deposition. After annealing at 600 °C, the Fe2O3 nanowire arrays were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these Fe2O3 nanowires crystallize with a polycrystalline corundum structure. The optical absorption band edge of Fe2O3 nanowire arrays exhibits a blue shift with respect of that of the bulk Fe2O3 owing to the quantum size effect. PACS 78.67.Lt; 81.05.Je; 81.07.Vb  相似文献   

17.
High-quality GaN nanowires synthesized using a CVD approach   总被引:3,自引:0,他引:3  
High-quality GaN nanowires were synthesized on a large-area Si substrate by direct reaction of gallium with ammonia using InCl3 as a catalyst. The morphology and microstructure of the resulting products were characterized using a field-emission scanning electron microscope (SEM), a high-resolution transmission electron microscope, and X-ray diffraction (XRD). XRD and electron diffraction revealed that the nanowires are of a hexagonal GaN phase with the wurtzite structure. The SEM study showed that the nanowires are straight and have a smooth morphology with lengths up to 500 μm. The present results reveal that InCl3 is an optimal catalyst in GaN nanowire production. Received: 2 April 2002 / Accepted: 12 April 2002 / Published online: 19 July 2002  相似文献   

18.
The structure and electrical properties of silicon ribbons grown on a substrate by the Ribbon Growth on Substrate (RGS) method method for solar cell applications have been investigated in secondary electron and electron beam induced current modes of scanning electron microscopy. The growth method and growth conditions have provided the formation of the coarse-grained structure of silicon, in which the majority of grains are separated by twin boundaries and the dislocation density does not exceed 106 cm−2. According to the electron beam induced current investigations, the recombination contrast from twin boundaries is extremely low at 300 K, only a small amount of twin boundaries show an increase in the contrast upon cooling, and the contrast from dislocations is almost absent in the temperature range from 100 to 300 K.  相似文献   

19.
We investigated the impact of the process temperature on the habits, forms and crystal structure of VO2 nanocrystals grown by a vapor-transport method on (0001) quartz substrates. Four distinct growth regimes were discerned: orthorhombic nanowires, sheets, hemispheres, and nanowires with a monoclinic structure. The nanostructures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). I/V characterization of individual nanowires was enabled by Ti/Au contact formation via electron beam lithography and lift-off techniques. The expected metal–insulator transition (MIT) was found in monoclinic VO2 nanowires.  相似文献   

20.
The microstructure of a composite containing a quasicrystal phase, i.e. so-called crystal–quasicrystal (CQ) composite, was studied. The CQ composite was obtained by the Bridgman method via solidification of Al61Cu27Fe12 alloy (numbers indicate at%). The process was conducted at a pull out rate of v = 0.07 mm/min. The average temperature gradient in the heating zone was 43 K/cm. The composite matrix consisted of cubic β phase Al(Fe, Cu), with reinforcement of λ-phase rod-shaped fibres surrounded by a quasicrystal icosahedral ψ phase, which also existed in the fibre core. The fibres were rhomboidal in cross-section. The composite was studied using X-ray and electron diffraction, light-optical and scanning electron microscopy (SEM), X-ray topography and Laue diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号