首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to make clear the origin of magnetic anisotropy of amorphous alloys produced by a single roller quenching method, the composition dependence of the in-plane magnetic anisotropy of cold-rolled and as-quenched amorphous (Fe1 x Ni x )78Si10B12 alloy systems was studied at room temperature. The twofold in-plane magnetic anisotropy constantK u of cold rolled and as-quenched specimen decreases with increase inx at the Fe-rich side, and increases drastically at aboutx=0.2. Beyondx=0.25,K u decreases gradually with further increase inx. From this study, it is emphasized that there is a clear correspondence between the atomic ratio of Fe to Ni at which the anomaly in magnetic anisotropy of the amorphous alloy occurs and the position of the fcc/bcc phase boundary in the Fe−Ni metal alloy system.  相似文献   

2.
Grain boundary segregation of Y and Zr in -Al2O3 and the atomic structural environment around the Y and Zr atoms have been investigated using high resolution STEM and EXAFS. At dilute concentrations, the Y ions in -Al2O3 grain boundaries, on average, are coordinated by 4 oxygens, at a distance of 2.30 Å, which corresponds nearly to the Y-O bond length in cubic Y2O3, and Zr ions are coordinated by 5 oxygens at a distance of 2.14 Å, which is approximately the same as the average Zr-O bond length in monoclinic ZrO2. However, in the EXAFS radial distribution function, the Y-cation and Zr-cation next nearest neighbor shell cannot be clearly identified. These results suggest that Y and Zr at dilute concentrations in -Al2O3 occupy grain boundary sites with well defined nearest neighbor cation-oxygen bond lengths similar to those in their parent oxides, but with the next nearest neighbor cation-cation distances varying considerably from site to site. Grain growth can cause grain boundaries to become supersaturated by Y. In this case, both the Y-O nearest neighbor coordination number and the ordering of Y with respect to Al ions beyond nearest neighbor O are increased. This Y-Al distance is the same as that expected for the Y-Al distance when Y substitutes for Al while relaxing the Y-O distance to that in Y2O3. This may indicate that as the Y concentration increases, Y begins to occupy near-boundary sites in planes on each side of the geometrical boundary. In these near-boundary planes, the nearest neighbor ordering extends at least to nearest neighbor cations. Nucleation of the YAG phase leads to the depletion of these partially ordered layers.  相似文献   

3.
The magnetoresonance and dielectric properties of a number of crystals of a new family of multiferroics, namely, rare-earth ferroborates RFe3(BO3)4 (R = Y, Eu, Pr, Tb, Tb0.25Er0.75), are studied in the sub-millimeter frequency range (ν = 3–20 cm−1). Ferroborates with R = Y, Tb, and Eu exhibit permittivity jumps at temperatures of 375, 198, and 58 K, respectively, which are caused by the R32 → P3121 phase transition. Antiferromagnetic resonance (AFMR) modes in the subsystem of Fe3+ ions are detected in the range of anti-ferromagnetic ordering (T < T N = 30–40 K) in all ferroborates that have either an easy-plane (Y, Eu) or easy-axis (Pr, Tb, Tb0.25Er0.75) magnetic structure. The AFMR frequencies are found to depend strongly on the magnetic anisotropy of a rare-earth ion and its exchange interaction with the Fe subsystem, which determine the type of magnetic structure and the sign and magnitude of an effective anisotropy constant. The basic parameters of the magnetic interactions in these ferroborates are found, and the magnetoelectric contribution to AFMR is analyzed.  相似文献   

4.
陈熹  王荫君  梁冰青  王晶  李健 《物理学报》1999,48(13):224-229
利用射频磁控溅射方法制备了非晶TbCo/Si多层膜,并对多层膜的磁性和磁光特性进行了测量.实验发现,随着Si层厚度的增加,非晶TbCo/Si多层膜的饱和磁化强度Ms、垂直各向异性常数Ku、磁光克尔角θK都显著下降.分析认为这是由于在TbCo层与Si层之间的层间互扩散形成了非磁性的Co2Si所致. 关键词:  相似文献   

5.
Pseudobinary high Pr-content Tb1−xPrx(Fe0.4Co0.6)1.93 (0.70≤x≤1.00) magnetostrictive alloys have been fabricated by a melt-spinning method. The effects of the composition, spinning, and annealing processes on the structure, thermal stability, and magnetic properties are investigated. At a wheel speed of v≤30 m/s, the as-spun ribbons consist of a mixture of (Tb,Pr)(Fe,Co)2 cubic Laves phase and some non-cubic phases. A single (Tb,Pr)(Fe,Co)2 phase with MgCu2-type structure is formed with the process for the speed of v≥35 m/s and subsequent annealing at 500 °C for 30 min. The lattice parameter of the Tb1−xPrx(Fe0.4Co0.6)1.93 Laves phase increases from 0.7354 nm for x=0.70 to 0.7384 nm for x=1.00 and approximately follows the linear Vegard's law. The Curie temperature decreases, while the saturation magnetization increases as increasing Pr content. The Pr-rich alloys possess the relatively lower coercivity and the faster saturation of magnetostriction as compared with the Tb-rich alloys, which can be understood by their lower magnetic anisotropy.  相似文献   

6.
Magnetic and magnetoelectric properties of ferroborate single crystals with complex composition (Tb1 − x Er x Fe3(BO3)4, x = 0, 0.75) and with competing exchange Tb-Fe and Er-Fe interactions are investigated. Jumps in electric polarization, magnetostriction, and magnetization are observed as a result of spin-flop transitions, as well as a considerable decrease in the critical field upon an increase in the Er concentration, in a field H c parallel to the c axis. The observed behavior of phase-transition fields is analyzed and explained using a simple model taking into account anisotropy in g factors and exchange splitting of funda-mental doublets of the easy-axis Tb3+ ion and easy-plane Er3+ ion. It is established that magnetoelectric and magnetostriction anomalies under spin-flop transitions are mainly controlled by the Tb subsystem. The Tb subsystem makes a nonmonotonic contribution ΔP a (H a , T) to polarization along the a axis: the value of ΔP a reverses its sign and increases with temperature due to the contribution from the excited states of the Tb3+ ion. Original Russian Text ? A.K. Zvezdin, A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob’ev, A.P. Pyatakov, V.Yu. Ivanov, A.M. Kuz’menko, A.A. Mukhin, L.N. Bezmaternykh, I.A. Gudim, 2009, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 1, pp. 80–86.  相似文献   

7.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

8.
The magnetic and structural characterization of Ti1−xFexO2 (x=0.025, 0.05, 0.07, 0.125, and 0.15) samples prepared by mechano-synthesis using TiO2 and Fe2O3 as starting materials are reported. XANES measurements performed at the Fe K-edge show that Fe ions are in 3+ oxidation state in the 7 at% Fe-doped sample and in a mixture of 2+ and 3+ oxidation states in the other samples. EXAFS results show the incorporation of Fe ions substituting Ti ones in the rutile TiO2 structure. They also reveal a strong correlation between the number of oxygen nearest neighbours and the Fe2+ fraction, i.e the number of oxygen near neighbours decreases when the Fe2+ fraction increases. All samples present ferromagnetic-like behaviour at room temperature. We found a clear dependence between saturation magnetization and coercivity with the fraction of Fe2+ and/or the number of Fe near neighbour oxygen vacancies.  相似文献   

9.
Superlattices of [001]fcc Co/Pd with varying Co thicknesses from one to eight atomic layers per modulation period were epitaxially grown on NaCl by vapour deposition in UHV. Transmission electron diffraction indicates lattice coherence between the Co and the Pd layers for Co thicknesses up to six atomic layers. If deposited at a substrate temperatureT s=50°C, only the superlattices containing Ci-monolayers show perpendicular magnetization. By raisingT s to 200°C, the perpendicular anisotropy for Co monolayers is increased, and is also observed for Co bilayers. We suggest that this is due tolayer smoothening, which increases Néel's interface anisotropy. For more than 6 atomic layers of Co a loss of coherence is observed atT s=50°C, accompanied by a structure transformation to hcp Co with a (0001)Co(111)Pd orientation.Non-epitaxial polycrystalline [111]-multilayers have a different anisotropy versus thickness behaviour. For such multilayers the range of Co thicknesses giving perpendicular magnetization is extended from 8 Å up to 12 Å atT s=200°C. The different behaviour of the single crystal [001] films is caused by a strong volume contribution to the anisotropy, which favours in-plane magnetization, opposing the perpendicular interface anisotropy. This easy-plane term is attributed to magneto-elastic anisotropy due to stretching of the Co layers, via a positive magnetostriction.  相似文献   

10.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

11.
The crystal structure of Tb30Fe70 and Co50Pd50 nanocrystalline films with strong magnetic anisotropy perpendicular to the film plane (K ~ 106 erg/cm3) is investigated using electron diffraction and transmission electron microscopy. All the studied films in the initial nanocrystalline phase undergo an explosive crystallization with the formation of dendrite structures. It is demonstrated that, after crystallization, the Tb-Fe and Co-Pd films exhibit a tetrahedrally close-packed atomic structure that has no analogs among these materials in the equilibrium state. The internal stresses in the films under investigation are estimated from an analysis of the bend extinction contours in the electron microscope images. The inference is made that strong perpendicular magnetic anisotropy can be associated with magnetostriction anisotropy due to the specific features of the film structure.  相似文献   

12.
建立了一种简便的、适用于磁畴模型应用的Tb0.3Dy0.7Fe2 合金本构参数辨识方法. 针对Tb0.3Dy0.7Fe2合金磁畴模型中本构参数不明确且直接实验测试困难的问题, 提出了一种数值计算与实验测试相结合的参数辨识方法. 采用坐标变换与绘制自由能等势曲线相结合的方法, 简化了载荷作用下Tb0.3Dy0.7Fe2 合金内磁畴角度偏转的数值计算, 研究了合金磁畴角度偏转模型的参数依赖性. 在此基础上, 结合简单的实验测试, 建立了Tb0.3Dy0.7Fe2合金各向异性常数K1K2、能量分布因子ω、晶轴取向分布的辨识及修正方法. 该方法能够简单、快速地完成Tb0.3Dy0.7Fe2 合金磁畴模型中本构参数的辨识, 对完善磁致伸缩材料磁畴偏转的数值计算模型非常有意义. 理论分析可为类磁致伸缩材料磁机耦合模型的建立、完善, 以及材料本构参数的辨识、获取提供参考.  相似文献   

13.
The effect of IIIA metal and transition metalT substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 (T=Mn, Fe, Co, B, Al, Ga) alloys at room temperature were investigated systematically. It was found that the primary phase of the Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys is the MgCu2-type cubic Laves phase structure for different substitution. The magnetostriction λ{ins} decrases greatly for the substitution of IIIA metal, B, Al and Ga, but is saturated more easily for Al and Ga substitution, showing that the Al and Ga substitution is beneficial to a decrease in the magnetocrystalline anisotropy of Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys. However, the substitution of transition metal Mn and Co decreases slightly the magnetostriction λ{ins}. It was also found that the effect of different substitutions on the spontaneous magnetostriction λ{in111} is distinct. The analysis of the M?ssbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry for Al and Ga substitution, namely spin reorientation, but it does not change evidently for B, Mn and Co substitution.  相似文献   

14.
The magnetic domain structures of Fe78.8−xCoxCu0.6Nb2.6Si9B9 (x=0, 20, 40, 60) alloys are investigated by Lorentz microscopy coupled with the focused ion beam method. The specimen prepared using the FIB method is found to have a considerably more uniform thickness compared to that prepared using the ion-milling method. In Fe38.8Co40Cu0.6Nb2.6Si9B9 and Fe18.8Co60Cu0.6Nb2.6Si9B9 alloys, 180° domain walls extending in the direction of the induced magnetic anisotropy are observed. Analysis with Lorentz microscopy reveals that the width of the magnetic domains decreases with an increase in the cobalt content or the induced magnetic anisotropy Ku, that is, the domain width d is proportional to the induced magnetic anisotropy (Ku)−1/4. On the other hand, in the in situ Lorentz microscopy observation as a function of temperature, magnetic ripple structures are found to appear in a localized area due to the fluctuation of magnetization vectors from 423 K. It is observed that the induced magnetic anisotropy caused by the applied magnetic field at 803 K is not suppressed by the magnetic ripple structures observed at 423–443 K.  相似文献   

15.
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29−xVxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants , and c and the unit cell volume of R3Fe29−xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y=6.5 and 6.9 in these hydrides.  相似文献   

16.
Magnetic contrast at the atomic level has been observed for the first time in scanning tunneling microscopy experiments on a magnetite (Fe3O4(001)) surface using in-situ prepared ferromagnetic Fe tips. A periodic corrugation with a 12 Å periodicity is clearly observed along the rows of FeB-sites which corresponds to the repeat period of Fe2+ and Fe3+ along these rows. This periodicity is not observed by using non-magneticW tips although the rows of FeB-sites can be resolved as well. The magnetic contrast observed with Fe tips is attributed to the different spin configurations of the magnetic ions Fe2+ and Fe3+ in Fe3O4.  相似文献   

17.
The ceramics and single crystals of the Bi2Sr2CaFe2Ox compound were synthesized. The X-ray diffraction data showed orthorhombic symmetry. The lattice parameters are equal toa=5.464 Å,b=5.453 Å,c=31.313 Å. The crystal structure is described by the primitive Bravais lattice with the possible space groups Pbmm. Pbm2 and Pb21m. The obtained X-ray patterns show the presence the incommensurate structural modulation with the following parameters: the modulation vector lies in the (100)-plane, the value of the wave-vector componentq b=0.22(3). The comparison of the obtained results with data for Fe-doped Bi2Sr2CaCu2Ox and Bi2Sr3Fe2Ox are presented. No magnetic peculiarities of the compound were found. Mssbauer measurements of the ceramic samples indicate the presence mainly of Fe3+ oxidation state and Fe4+ (about 20%). The decrease of the quadrupole-splitting values for 2212Fe in comparison with Fe-doped 2212Cu was revealed that may be connected with higher symmetry of the local environment of Fe atoms in 2212Fe.  相似文献   

18.
The spontaneous magnetization and principal magnetic susceptibilities of TbFeO3 were measured from 4.2 to 300 K. The weak ferromagnetic moment is along the c crystallographic axis in the entire temperature range. The field dependence of the magnetization at 4.2 K was also studied. The magnetic behavior is interpreted in terms of an interaction between the ordered Fe3+ spin system and the electrons occupying the lowest lying “accidental” doublet of the Tb3+ ions. The FeTb interaction and the Tb3+ Van Vl eck susceptibility along the c axis play significant roles in determining the magnetic configuration of the Fe3+ spin system. No indication was found that the TbTb interaction plays a significant role in the magnetic behavior of TbFeO3 at temperature above 4.2 K.  相似文献   

19.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

20.
Single-crystal Ni films were made by the molecular beam epitaxy (MBE) method on Si(1 0 0) and Si(1 1 0) substrates, respectively, with an 100 Å thick Ag buffer layer. The growth temperature TS was 270 °C, and the film thickness t was 500 Å. From reflection high-energy electron diffraction (RHEED) patterns, the crystalline symmetries of the two films are clear and as expected. Intrinsic coercivities, HC(1 0 0) and HC(1 1 0), are plotted as a function of the angle of rotation ? around the crystal axes [1 0 0] and [1 1 0], respectively. The results show that both HC(1 0 0) and HC(1 1 0) exhibit mixed features of the crystalline (KC) and the induced uniaxial magnetic (Ku) anisotropies. Ku is the magneto-elastic energy, due to lattice mismatch at the Ni/Ag interface. Moreover, the crystalline anisotropy fields, HK(1 0 0) and HK(1 1 0), and the induced anisotropy filed, Hu, can be calculated as a function of ?, respectively. Then, each HC curve is fitted by the equation: HC = Ho + HK + Hu, where Ho is the isotropic pinning field. Meanwhile, domain structures were examined by the Bitter method, using Ferrofluid 707. On the Ni(1 0 0) film, we observed the charged cross-tie walls, and on the Ni(1 1 0) film, the un-charged Bloch walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号