首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the interaction of femtosecond laser pulses with droplets microplasma at the intensity of 1016 W/cm2 is theoretically studied. Laser absorption, suprathermal electron generation, and second harmonic generation are discussed. Using an analytical model and a 2D particle-in-cell code, we find that the dominated mechanism is resonant absorption in the interaction of femtosecond laser pulses with droplets for the misrospherical geometry.  相似文献   

2.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

3.
Spectral, temporal, and spatial characteristics of harmonics generated at solid surfaces interacting with laser radiation (t=27 ps and I≤1.5×1015 W/cm2) are studied. Spectral broadening and a long-wavelength shift of the second harmonic were observed for laser radiation intensities exceeding 5×1014 W/cm2. Results of the study of the conversion of spectral parameters and polarization features for the generation of second and third harmonics are presented. Conversion efficiencies for the second, third, and fourth harmonic are 2×10?8, 10?10, and 5×10?12, respectively. The results obtained are compared with data of analogous studies utilizing shorter pulses.  相似文献   

4.
We show that photoionization of wide band gap silicate glasses by infrared ultrashort laser pulses can occur without laser-induced damage. Two glasses are studied, fused silica and a multi-component silicate photo-thermo-refractive (PTR) glass. Experiments are performed by low numerical aperture focusing of ultrashort laser pulses (100 fsec<τ<1.5 psec) at the wavelengths 780 nm, 1430 nm, and 1550 nm. Filaments form inside both glasses and are visibly observable due to intrinsic luminescence. Keldysh’s theory of nonlinear photoionization is used to model the formation of filaments and values of about 1013 W cm−2 for the laser intensity and 1019 cm−3 for the free electron density are estimated for stable filaments to arise. Laser-induced damage is studied by the generation of a third harmonic from an interface created between a damage site and the surrounding glass matrix. It is found that third harmonic generation occurs only after several thousands of laser shots indicating that damage is not a single-shot phenomena. The ability to photoionize PTR glass without damage by ultrashort laser pulses offers a new approach for fabricating diffractive optical elements in photosensitive glass.  相似文献   

5.
Femtosecond pulses of a Cr:forsterite laser are used to study second-and third-harmonic generation in a layer of single-wall carbon nanotubes produced by low-velocity spraying. The harmonic amplitude in our experiments scales as (I p)n as a function of the pump intensity I p, with n=2 and 3 for the second and third harmonics, respectively. This scaling law holds up to pump intensities on the order of 1012W/cm2. The ratio of the maximum signal to the averaged background in the spectra of the second and third harmonics is estimated as 50 and 30, respectively. The second and third harmonics produced by a linearly polarized pump field are also linearly polarized, with their polarization vectors oriented along the polarization direction of the pump field. The capabilities of nonlinear-optical methods for structural and morphological analysis of carbon nanotubes are discussed, as well as ways to create solid-state carbon-nanotube generators of optical harmonic.  相似文献   

6.
We analyze the morphology of ablated nanoparticles after their laser-induced deposition on various substrates. We show that, at moderate laser intensity of the 210 ps pulses on the surface of nanoparticle-containing materials (<5×109 W?cm?2), the deposited material remains approximately the same as the initial nanoparticles. We compare these deposited nanoparticles with the debris obtained by the laser ablation of bulk material of the same origin as nanoparticles at different intensities of laser radiation. The presence of nanoparticles in laser plumes allowed for analyzing high-order nonlinear optical properties of nanoparticles. The efficient high-order harmonic generation was achieved during propagation of femtosecond pulses through such plasmas.  相似文献   

7.
Quantum electrodynamics (QED) predicts that electromagnetic fields interact with each other in vacuum. We study the possibility of revealing this interaction experimentally with intensities on the order of 1024–1026 W/cm2, which may be available in the next generation of laser systems. In particular, we investigate high-order harmonic generation in vacuum via the collision of two ultrastrong counterpropagating laser pulses. The experimental feasibility of the related process of stimulated light-by-light scattering is also examined. Finally, the importance of including diffractive effects to describe the nonlinear interaction between an x-ray probe and a strong, focused optical standing wave is pointed out.  相似文献   

8.
We simulate the response of He+ exposed simultaneously to fundamental and 27th harmonic pulses from an intense Ti:sapphire laser. High-order harmonic emission from He+ is enhanced by 17 orders of magnitude compared with the case of the fundamental pulse alone. Moreover, while an individual 10 fs laser with a fundamental wavelength of 800 nm and a peak intensity of 3×1014 W/cm2, or its 27th harmonic pulse with a peak intensity of 1013 W/cm2, ionizes no more than 5×10-6 of He+, their combined pulses lead to a surprisingly high He2+ yield of 17%. The underlying mechanism is either harmonic generation from a coherent superposition of states or two-color frequency mixing, depending on the laser wavelength. PACS 32.80.Rm; 42.50.Hz; 42.65.Ky  相似文献   

9.
强激光场中离子HD+光解离几率的相干控制   总被引:5,自引:5,他引:0  
王国文 《光子学报》1998,27(8):673-678
对含时薛定谔方程用短时传播子的对称分割法求得了非微扰的数值解,计算了强超短脉冲基频激光(波长306.7nm)与其三倍频激光作用下的离子HD+光解离的相干控制参量大小设该离子的初态为电子振动.基态其中的相干激发是共振的.二束光之间的相对相位变化从0到360°在基频和倍频激光强度各为5×1013W/cm2和5.09×108W/cm2情形下,发现相对相位为π时,光解离几率达到最大。  相似文献   

10.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

11.
We have made a direct measurement of the absolute nonlinear coefficient for AgGaSe2 by phasematched second harmonic generation. The measured value is d36 = (3.24 ± 0.50) × 10?11 m/V. For CO and Co2 lasers the observed phasematching angles for second harmonic generation and frequency mixing are within one degree of the values calculated by fitting the reported index of refraction data to Sellmeier equations. At 1.06 μm the optical damage threshold depends on the number of incident laser pulses. For 1000 pulses damage occurs at 11 MW/cm2. The samples were cut from crack-free single crystal boules with absorption coefficient smaller than 0.1 cm? at 10.6 μm.  相似文献   

12.
The influence of focusing conditions (numerical apertures from 0.004 to 0.06) on absolute energetic characteristics of third harmonic generation (THG) in air was experimentally studied for pumping 1R (744 nm wavelength) femtosecond laser pulses. THG was observed both for sub-critical and super-critical laser pulses in the linear and non-linear propagation modes, respectively. The maximum THG efficiency of 1.6 × 10−3 was obtained in our experiments at the tight focusing conditions and the sub-critical pulse powers.  相似文献   

13.
We measured the nonlinear susceptibilities of Kr up to fifth order via nonresonant third-harmonic generation (THG) of a frequency-doubled dye laser at 3648 Å. In agreement with theory the optimum intensity conversion efficiency saturates at 10-5 in pure Kr. The phase matching of the third harmonic and fundamental wave breaks up owing to intensity-dependent changes of refractive indices. Phase matching in high-density Kr/Ar mixtures raised the 3648 Å to 1216 Å third harmonic conversion obtained in pure Kr by more than two orders of magnitude, as predicted by theory but hitherto never experimentally confirmed. With laser intensities of 5 × 109 W/cm2 at 3648 Å we measured conversion efficiencies of 1.4 × 10-4 limited by gas breakdown. Taking into account the Lyman alpha absorption of Kr2 and KrAr molecules in the high-density regime, a conversion efficiency of 10-3 is expected from extrapolating the experimental results to Kr/Ar mixtures of up to 3 × 103 torr. It is limited by self-focusing, assuming the minimum threshold intensity of gas breakdown is 1011 W/cm2, as predicted by theory.  相似文献   

14.
We have studied high-order harmonic generation (HHG) from organic molecules irradiated with near-infrared high intensity laser pulses of 70 fs and 240 fs duration. The molecular systems studied were the aromatics benzene and naphthalene and the alkanes cyclopropane and cyclohexane (cyclic) and n-hexane (linear). Harmonic intensities were measured both as a function of laser intensity (in the range 5×1013-5×1015 W cm-2) and as a function of ellipticity of the laser field polarisation. The results were compared with those from the xenon atom. For 70 fs pulses, harmonic generation from the organic systems was similar to that of xenon, revealing an atom-like behaviour for molecules when the laser pulse duration is shorter than the fragmentation timescale of the molecule. We note significant differences between molecules with respect to HHG efficiencies and the suppression of HHG in larger species. We discuss these differences in the context of the molecular properties, electronic structure and behaviour of ionisation and fragmentation that result in enhancement of field ionisation in larger systems. Study of the polarisation ellipticity dependence of HHG shows that the harmonic yield in molecules is less sensitive to the polarisation than for atoms (xenon). This is consistent with the expected behaviour given the larger recollision cross-section presented by the core in the molecular system compared to the atom. Our results suggest that study of HHG from molecules exposed to ultra-short pulses is potentially a powerful tool for understanding the electron dynamics of molecules exposed to an intense field. Received 14 September 2000 and Received in final form 6 December 2000  相似文献   

15.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

16.
The optical properties of the nonlinear crystals lithium borate (LBO), barium borate (BBO) and deuterated potassium phosphate (KD*P) are compared for second and third harmonic generation of Nd:YAG laser radiation. In an experimental investigation the conversion efficiency has been measured as a function of the energy density of 8 ns long laser pulses, generated by a commercial Nd:YAG oscillator-amplifier system. In LBO and BBO the second harmonic generation saturates at an energy density of about 1.5 J cm–2 at efficiencies of 55–60%. In KD*P comparable efficiencies (40–55%) require energy densities of 2–2.6 J cm–2. Similar results are obtained for frequency tripling. In LBO and BBO saturated efficiencies of 20–25% are measured at an energy density of about 1.5 J cm–2. In KD*P efficiencies of 20% are obtained at energy densities exceeding 2 J cm–2. Besides for doubling and tripling of Nd:YAG laser radiation the phase-matching is calculated for frequency conversion of tunable laser light. The results demonstrate that in LBO and BBO phase-matched sum-frequency mixing of UV and infrared laser light generates tunable radiation at wavelengths as short as the transmission cut-off at 160 nm and 190 nm, respectively.  相似文献   

17.
The great progress in high-peak-power laser technology has resulted recently in the production of ps and subps laser pulses of PW powers and relativistic intensities (up to 1021 W/cm2) and has laid the basis for the construction of multi-PW lasers generating ultrarelativistic laser intensities (above 1023 W/cm2). The laser pulses of such extreme parameters make it possible to produce highly collimated beams of electrons or ions of MeV to GeV energies, of short time durations (down to subps) and of enormous currents and current densities, unattainable with conventional accelerators. Such particle beams have a potential to be applied in numerous fields of scientific research as well as in medicine and technology development. This paper is focused on laser-driven generation of fast ion beams and reviews recent progress in this field. The basic concepts and achievements in the generation of intense beams of protons, light ions, and multiply charged heavy ions are presented. Prospects for applications of laser-driven ion beams are briefly discussed.  相似文献   

18.
林正喆  庄军  宁西京 《中国物理 B》2010,19(11):113206-113206
This paper proposes highly charged ions pumped by intense laser to produce very high order harmonics.Numerical simulations and full quantum theory of Ne 9+ ions driven by laser pulses at 1064 nm in the power range of 10 9 W/cm 2 ~ 10 15 W/cm 2 show that the emission spectrum corresponds to the electronic transitions from the excited states to the ground state,which is very different from the spectrum of general high-order harmonic generation.In such situation,harmonic order as high as 1000 can be obtained without producing lower order harmonics and the energy conversion efficiency is close to general high order harmonic generation of hydrogen atom in the same laser field.  相似文献   

19.
Intensity-dependent absorption of 25 ns excimer laser pulses in common UV-window materials was investigated. By employing a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements, two-photon absorption coefficients were determined at intensities of 2–80 MW/cm2 and found to be in good agreement with previous measurements at 10–100 GW/cm2. Also, color-center formation in fused silica was observed. It was possible to quantify transient and cumulative effects as a function of intensity.  相似文献   

20.
We demonstrate the generation of high harmonics (up to the 65th order, λ=12.24 nm) of a Ti:sapphire laser radiation after the propagation of femtosecond laser pulses through the low-excited plasma produced by a picosecond prepulse radiation on the surface of different targets. High-order harmonics generated from the surface plasma of most targets showed a plateau pattern. It is assumed that the harmonic generation in these conditions occurs due to the interaction of the femtosecond pulses with the ions. The conversion efficiencies at the plateau region were varied between 1×10-7 to 8×10-6, depending on the target. The main contribution to the limitation of harmonic generation efficiency and cutoff energy was attributed to the self-defocusing of main pulse. A considerable restriction of the 27th harmonic generation was observed at different focusing conditions in the case of chromium plasma. Our observation of the resonance-induced enhancement of a single harmonic (λ=61.2 nm) at a plateau region with the efficiency of 8×10-5 in the case of In plasma can offer some expectation that analogous processes can be realized in other plasma samples in the shorter wavelength range where the highest harmonics were achieved. PACS 42.65.Ky; 52.35.Mw; 52.38.-r  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号