首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Filamentation occurs within a 1.5 cm-long crystal of BaF2 during the propagation of intense, ultrashort (40 fs) pulses of 800 nm light; a systematic study as a function of incident power enables us to extract quantitative information on laser intensity within the condensed medium, the electron density and the six-photon absorption cross section. At low incident power, a single filament is formed within the crystal; two or more filaments are observed along the direction transverse to laser propagation at higher incident powers. Further, due to fluorescence from six-photon absorption (6PA), we are able to map the intensity variation in the focusing–refocusing cycles along the direction of laser propagation. At still higher incident powers, we observe splitting of multiple filaments. By measuring the radius (L min ) of single filament inside BaF2, we obtain estimates of peak intensities (I max ) and electron densities (ρ max ) to be 3.26×1013 W cm−2 and 2.81×1019 cm−3, respectively. Use of these values enables us to deduce that the 6PA cross-section in BaF2 is 0.33×10−70 cm12 W−6 s−1.  相似文献   

2.
Nonlinear (NL) optical properties of antimony–germanium–sulfur (Sb–Ge–S) glasses were investigated using laser pulses of 65 fs at 1560 nm. Samples having concentration ratio [S]/[Ge]=2.69 with different antimony concentrations were studied. Glasses with different oxidation states of Sb were investigated using the thermally managed Z -scan technique. The influence of the Sb oxidation state on the NL properties was evaluated. NL refraction indices of electronic origin, n 2≈10−13 cm2/W, two-orders of magnitude larger than for fused silica and NL absorption coefficients smaller than 0.55 cm/GW were measured. Appropriate figures-of-merit for photonic applications were determined.  相似文献   

3.
The phase-matched collinear third harmonic generation of picosecond laser pulses in a 0.0825 molar hexafluoroisopropanol solution of a pyrimidonecarbocyanine dye is studied. The fundamental pulses are generated in a passively mode-locked Nd-phosphate glass laser. The saturation of third harmonic generation at high intensities is investigated. The influences of two-photon absorption, excited-state absorption, and amplified spontaneous emission are discussed. For input peak intensities above 1011 W/cm2 a third harmonic energy conversion of about 2×10–4 is achieved.  相似文献   

4.
Single crystals of a chalcone co-crystal (C18H19NO4/C17H16NO3Br; 0.972/0.028) have been grown by slow evaporation from solution. The powder second harmonic generation (SHG) efficiency of this chalcone co-crystal is 7 times that of urea. The dependence of second harmonic (SH) intensity on particle size revealed the existence of phase matching direction in this crystal. The large SHG efficiency observed is mainly due to the unidirectional alignment of molecular dipoles, in which the dipole moment of each molecule adds to establish a net polarization. The weak N–H⋅⋅⋅O hydrogen-bond interactions help to stabilize the noncentrosymmetric crystal packing and also contribute partly to the SHG. The better thermal stability, transparency and high laser damage resistance (>1.5 GW cm−2 at 532 nm, 8 ns) of this chalcone co-crystal indicate that it is a promising material for frequency doubling of diode lasers down to 470 nm. This molecule also shows a third-order NLO response and good optical limiting property of 8 ns laser pulses at 532 nm. The mechanism for optical limiting in this chalcone was attributed to two-photon induced excited state absorption that leads to reverse saturable absorption. The structure–property relationship in this chalcone and related compounds is discussed based on the experimental results and semiempherical hyperpolarizability calculations.  相似文献   

5.
High-power optical multimode fibers are essential components for materials processing and surgery and can limit the performance of expensive systems due to breakdown at the end faces. The aim of this paper is the determination of laser-induced damage thresholds (LIDT) of fibers (FiberTech) and preforms (Heraeus Suprasil F300). Preforms served as models. They were heated up to maximum temperatures of 1100, 1300 and 1500°C and cooled down to room temperature at rates of 10 K min−1 (oven) and ∼105 K min−1 (quenched in air) to freeze in various structural states simulating different conditions similar to a drawing process during the production of fibers. Single- and multi-pulse LIDT measurements were done in accordance with the relevant ISO standards. Nd:YAG laser pulses with durations of 15 ns (1064 nm wavelength) and 8.5 ns (532 nm) at a repetition rate of 10 Hz were used. For the preforms, LIDT values (1-on-1) ranged from 220 to 350 J/cm2 (1064 nm) and from 80 to 110 J/cm2 (532 nm), respectively. A multi-pulse impact changed the thresholds to lower values. The LIDT (1064 nm wavelength) of the preforms can be regarded as a lower limit for those of the fibers.  相似文献   

6.
We present the results of research on continuous tuning of a neodymium laser radiation frequency in the UV and vacuum ranges. We obtained generation of the total frequency of the waves of the second harmonic and of parametric light generator radiation in the UV region (338–366 nm). We investigate the optimum conditions for tuning UV radiation in the 113.5–117.0 nm range in the process of generation of the third harmonic in xenon and its mixtures with other gases. In the vacuum UV range investigated, an efficiency of generation of the third harmonic of ∼5·10−4 and a tuning range above 2600 cm−1 are realized. Scientific Industrial Association “Akadempribor”, Academy of Sciences of Uzbekistan, Akademgorodok, Tashkent, 700143, Uzbekistan. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 528–535, July–August, 1997.  相似文献   

7.
Streak camera detection has been used to determine the temporal characteristics of pulses from Nd:phosphate glass used as a mode-locked laser oscillator and as an amplifier. The frequency doubled pulses are not transform limited (Δν = 46 cm-1, Δt = 6 ps). The fourth harmonic has a spectral bandwidth of 11 cm-1 and is tunable across the full bandwidth of the second harmonic. Temperature tuning characteristics and efficiencies for harmonic generation are described. A comparison is made with the properties of Nd:silicate glass.  相似文献   

8.
The influence of focusing conditions (numerical apertures from 0.004 to 0.06) on absolute energetic characteristics of third harmonic generation (THG) in air was experimentally studied for pumping 1R (744 nm wavelength) femtosecond laser pulses. THG was observed both for sub-critical and super-critical laser pulses in the linear and non-linear propagation modes, respectively. The maximum THG efficiency of 1.6 × 10−3 was obtained in our experiments at the tight focusing conditions and the sub-critical pulse powers.  相似文献   

9.
The third-order optical nonlinearity, χ (3), is measured in transparent glasses (BK7 and fused silica) and crystals (BaF2 and quartz) using 36-fs, 800-nm laser pulses and the optical Kerr gate (OKE) technique; values are found to lie in the range 1.3–1.7×10-14 esu, in accordance with theoretical estimates. We probe the purely electronic response to the incident ultrashort laser pulse in fused silica and BK7 glass. In BaF2 and quartz, apart from the electronic response we also observe contribution from the nuclear response to the incident ultrashort pulses. We observe oscillatory modulations that persist for ~400 fs. The response of the media (glasses and crystals) to ultrashort pulses is also measured using two-beam self-diffraction; the diffraction efficiency in the first-order grating is measured to be in the range of 0.06–0.13 %. Third harmonic generation due to self-phase matching in the transient grating geometry is measured as a function of temporal delay between the two incident ultrashort pulses, yielding the autocorrelation signal.  相似文献   

10.
Glass doped with PbS quantum dots is presented as a saturable absorber (SA) for a passive Q-switching of a diode-pumped 1.9 μm Tm:KYW laser. Output pulses with energy of 44 μJ at a repetition rate of 2.5 kHz with an average output power of 110 mW were obtained. The Q-switching conversion efficiency was 33%. The absorption saturation intensity of the glass doped with PbS quantum dots with a mean radius of 5.2 nm at a wavelength of 2 μm was measured to be 1.5 MW/cm2.  相似文献   

11.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

12.
A U–Ne hollow cathode discharge tube is used as a source of uranium atomic vapors as well as a photoelectron/photoion detector for carrying out two-color three-photon photoionization spectroscopy of uranium. Using the uranium excitation transition 0 cm−1 (5L 6 0 ) → 16 900.38 cm−1 (7M7) at 591.5-nm laser wavelength as a first step transition and scanning the wavelength of a second laser from 558 to 568 nm, high-lying odd-parity atomic levels of uranium are studied in the energy region 34 500–34 813 cm−1. All the expected 21 odd-parity atomic levels identified by various researchers in this region are observed in a single spectrum, demonstrating the high sensitivity achieved therein. In addition to this, we have identified eight autoionization resonances of uranium starting from its odd-parity atomic level at 33 801.06 cm−1 pumped by two-photon excitation. Four out of these eight autoionization resonances are observed for the first time.  相似文献   

13.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

14.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

15.
We report the experimental investigations of nonlinear-laser effects in LuVO4 vanadate under one-micron picosecond Nd3+:Y3Al5O12 pumping. In this tetragonal host-crystal for Ln3+ lasants for the first time we excited ultra-broad, more than one and half octave (13500 cm−1) Raman induced Stokes and anti-Stokes generation combs and observed multi-step cascaded parametric χ (3)-lasing in UV spectral region. All generation lines were identified and attributed to SRS-promoting modes of the crystal (ω SRS1≈900 cm−1 and ω SRS2≈113 cm−1). We classified this vanadate as a promising material for self-Raman laser converters.  相似文献   

16.
We have developed intense vacuum ultraviolet (VUV) radiation sources for advanced material processing, such as photochemical surface reactions and precise processing on a nanometer scale. We have constructed a new VUV laser system to generate sub-picosecond pulses at the wavelength of 126 nm. A seed VUV pulse was generated in Xe as the 7th harmonic of a 882-nm Ti:sapphire laser. The optimum conversion was achieved at the pressure of 1.2 Torr. The seed pulse will be amplified by the Ar2*\mathrm{Ar}_{2}^{*} media generated by an optical-field-induced ionization Ar plasma produced by the Ti:sapphire laser. We have obtained a gain coefficient of g=0.16 cm−1. Our developing system will provide VUV ultra-short pulses with sub-μJ energy at a repetition rate of 1 kHz.  相似文献   

17.
We report on an angularly tunable laserline notch filter from 760 to 785 nm with optical density of 5.7, 3 dB bandwidth of 9 cm−1 (0.55 nm) and greater than 80% transmission. The notch filter is a single element composed of six bonded slanted reflective holographic gratings in glass.  相似文献   

18.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

19.
We study experimentally the formation of refractive index voxels (volume elements) in photorefractive LiNbO3 and LiTaO3 crystals illuminated with high irradiance femtosecond laser pulses. We used 150 fs pulses at 800 nm wavelength (energy 6–50 nJ) tightly focused inside the crystals in a single shot regime. This resulted in a formation of a micrometer size region of elevated refractive index, which may be used as memory bits in information storage/retrieval application. The maximum refractive index change of 5×10−4 was recorded in undoped LiNbO3 at an average light intensity of ∼TW/cm2 that is close to the breakdown threshold. A simple setup for photorefractive recording and in situ monitoring of the refractive index changes has been proposed. M. Sūdžius leaves from: the Institute of Materials Science and Applied Research of Vilnius University, Lithuania.  相似文献   

20.
The third harmonic of 810-nm 100-fs pulses at 130 μJ is generated very efficiently when ultrashort pulses from two noncollinear beams interfere in an optical medium to create an instantaneous transient grating via the optical Kerr effect. The grating couples two pathways for third-harmonic generation, each taking two photons from one beam and one photon from the other beam, respectively. The coupling enables self-phase matching in the complete process, resulting in a conversion efficiency of ≈3%. Scattering an independent beam at the transient grating confirms a lifetime limited by the pulse duration, with a reaction on the order of one optical cycle. Using the second harmonic of a Ti-sapphire laser at 405 nm, it is shown that the generation of the transient Kerr grating is a general feature, requiring less than 20 μJ/pulse. By introducing a third femtosecond beam we are able to emulate various digital logic units with femtosecond response. Received: 16 October 2001 / Published online: 6 June 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号