首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) (PZT) nano-powder with a perovskite structure was fabricated using sol–gel process. The average crystallite diameter of the PZT powder is calculated to be 23.6 nm and the average agglomerate size is about 200 nm. The 0–3 cement based nano-PZT composites were obtained by pressing the mixture of white cement and the nano-PZT powders under a high pressure followed by steam curing. The properties of the nano-PZT/cement piezoelectric composites have been measured and compared to the PZT/cement composites incorporated with ground coarse PZT particles. The enhanced piezoelectricity of the nano-PZT/cement composites can be attributed to the good connectivity between the nano-PZT particles among the cement matrix.  相似文献   

2.
Lead zirconate titanate (PZT) fibres were prepared by a powder-based extrusion method. Pre-sintered PZT powder mixed with poly(acrylic acid) was spun in a spinnerette to produce fibres. The fibre of ∼400 μm diameter was used to fabricate 1-3 PZT fibre/epoxy composite discs with different volume fractions (ϕ) of PZT. Since the ceramic fibres are rather brittle, their elastic properties cannot be measured directly. In order to determine the properties of the ceramic fibres, effective properties of the fibres/epoxy 1-3 composite were measured. By using a modified series and parallel model, the properties of 1-3 composites can be calculated. Then, the elastic coefficient s33,fibreE, relative permittivity ε33,fibreT and piezoelectric strain coefficient d33,fibre of the ceramic fibre could be found. Ring-shaped PZT fibre/epoxy materials composites with different ϕ were fabricated to be used as the sensing material in force sensor applications. The ring-shape composite with ϕ=0.5 was installed into a housing and the sensor was calibrated by different methods and its sensitivity was found to be 144 pC/N within the frequency range of 0.5–6.4 kHz which is much higher than that of a quartz force sensor with a similar structure. PACS 07.07.Df; 72.80.Tm; 77.84.Dy  相似文献   

3.
Lead zirconate titanate (PZT) and cement composites of 0–3 connectivity were produced using PZT of 30–90% by volume. The effects of PZT on dielectric and piezoelectric properties of the composites were then investigated. The dielectric constant (εr) of the composites was found to increase with increasing PZT content. The εr value of 90% PZT composite obtained was 291 which is noticeably higher than that of PC sample (εr = 79). The dielectric loss (tan δ) was found to decrease with PZT content and the tan δ value was lowest at 0.63 for 90% PZT composite. Piezoelectric coefficient (d33) was found to increase with PZT content as expected. However, the effects were most significant at two stages, first at 30% PZT volume content (14 pC/N) and then at very high PZT content (90% by volume) where d33 value reached 43 pC/N.  相似文献   

4.
This paper reports that the lead zirconate titanate (PZT) piezoelectric composites incorporating zinc oxide nanowhiskers (ZnOw) were prepared by the conventional solid state processing. The whisker-dispersed PZT composites (PZT/ZnOw) presented a significant enhancement in the mechanical properties such as Young's modulus, tensile strength and compressive strength. Especially, the compressive strength increased from 153 MPa for the PZT to 228 MPa for the PZT/ZnOw composites. The reinforcement mechanism in strength of the composites was discussed. The me- chanical quality factors of the PZT/ZnOw composites increased considerably, while the piezoelectric constants and electromechanical coupling coefficient decreased slightly. The composites with good electrical and excellent mechanical properties are promising for further applications.  相似文献   

5.
Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.  相似文献   

6.
PZT–silica fume cement (PZT–SFC) composites were produced using PZT (at 50% and 60% by volume) and silica fume cement (cement containing silica fume of 5% and 10% by weight). PZT–Portland cement with no silica fume was also produced to allow comparison of the results. Dielectric constants of PZT–SFC composites are found to be higher than that of PZT–PC composite where εr value was found to increase with increasing SF content (εr values of composite with SF at 0%, 5% and 10% are 117, 125 and 178, respectively). PZT–SFC composites were successfully poled and d33 results of PZT–SFC composites (d33 = 18 pC/N) were found to be marginally higher than that of PZT–PC composite (d33 = 17 pC/N). SEM micrograph also shows a dense matrix of SFC hydration product surrounding the PZT particles. From the results, these PZT–SFC composites are therefore promising materials for use in structural applications and should be ideal for high strength structures where SFC is used in the host structure.  相似文献   

7.
武峥  周嘉仪  曹艺  马柯  贾艳敏  张以河 《物理学报》2014,63(2):27701-027701
1-3压电复合材料的压电、介电及铁电性能要远远优于0-3压电复合材料.在制备传统的0-3复合材料过程中引入电泳技术,使得压电颗粒在聚合物基体中取向排列,制备得到伪1-3复合材料.实验结果表明:在制备PZT/环氧树脂0-3复合压电材料固化过程中,采用500 V/mm,4 kHz的电场对其进行电泳辅助取向,可使得颗粒呈现珍珠串状排列,得到伪1-3复合材料;其压电、介电、铁电性能均比原来的0-3复合材料有显著的提高.电泳辅助制备技术用于制备伪1-3复合压电材料具有操作简单、成本低廉、压电、介电、铁电性能显著提高等优点,在智能传感领域具有很好的实际应用前景.  相似文献   

8.
In this work, the effect of PZT particle size on the properties of PZT–PC composites was investigated. PZT of various median particle sizes (3.8–620 μm) were used at 50% by volume to produce the composites. The results showed that the dielectric properties of the composites increased marginally with PZT particle size where εr = 176 and 167 for composites with 620 μm and 3.8 μm PZT particle size, respectively. A noticeable increase in d33 values was also found when the particle size was increased where the composite with 620 μm PZT particles size was found to have d33 value of 26 pC/N compared to 17 pC/N for the composite with 3.8 μm PZT particle size. The enhancement in the dielectric and piezoelectric properties was contributed to lesser contacting surfaces between the cement matrix and the PZT particles.  相似文献   

9.
Ferrite-piezoelectric composites are magnetoelectric (ME) due to the interaction between magnetic and electrical subsystems through mechanical forces. A theory for the low-frequency Maxwell-Wagner relaxation in ME coefficients is discussed for bulk composites of nickel or cobalt ferrite and lead zirconate titanate (PZT). ME coefficients versus frequency spectra show two types of relaxation, over 0.1-100 μHz and 1-1000 Hz. The relaxation frequencies and the magnitude of the ME coefficients are dependent on the electrical and composite parameters and volume fraction for the two phases. The ME coefficient αE is in the range 10−1-104 mV/cm Oe, higher in cobalt ferrite-PZT than for nickel ferrite-PZT, and is strongly dependent on PZT volume fraction v. Estimates of αE and relaxation frequencies versus v provided here are useful for engineering composites with maximum ME effects for specific frequency bands.  相似文献   

10.
The polycrystalline (Bi1-xPbx)(Fe1-xZr0.6xTi0.4x)O3 (x=0.15, 0.25, 0.40, 0.50) (BPFZT) nanoceramic composites were synthesized using mechanical activation and solid-state reaction techniques. The formation of single-phase compounds with 100% solubility of BiFeO3 and Pb(Zr0.6Ti0.4)O3 was confirmed by an X-ray diffraction (XRD) technique. Detailed structural analysis of the fabricated BPFZT composites suggests the formation of tetragonal structure (i.e., distorted perovskite) for all composition. The dielectric constant and loss-tangent of the BPFZT composites decrease on increasing frequency and temperature. It has also been observed that the leakage current and loss-tangent are reduced by increasing the contents of PZT in the BPFZT composites, and hence they may be considered useful for some applications. The values of activation energies and the nature of variation of conductivity with temperature and frequencies suggest that the space charge and oxygen ion vacancies play a significant role in the conduction process. PACS 61.10.Nz; 77.22.Ch; 77.84.Lf; 81.20.Ev  相似文献   

11.
The multifrequency composites of 2-2 connectivity modelled in this work are made with groups of piezoelectric elements of different lateral dimensions, periodically reproduced in the structure. These composites have potential to improve the performances of standard piezoelectric composites with the same materials and ceramic fraction, on account that they have different resonators coupled mechanically along the structure. A one-dimensional model was developed to study their performances in a first approximation. In order to obtain a design model, a two-dimensional model, previously used to describe multielement array transducers, has been extended to the case of 2-2 polymer-piezoceramic composites. Several composite samples, having piezoceramic strips with different width-to-thickness ratios, have been built, and their resonance behaviour compared with the model prediction. Finally, the model has been extended to the case of 2-2 multifrequency composites. For multifrequency composites having in the same composite structure two or three piezoceramic strips with different lateral dimensions, the comparison between experimental and predicted results shows good agreement. The model has been used to optimise a double composite in comparison with a standard one with the same volume fraction and constituents.  相似文献   

12.
A method for obtaining PZT/PZT ceramic piezocomposites is developed. Samples of piezocomposites with a volume fraction of components from 0 to 100% are prepared and investigated. Various types of PZT type piezoceramics powders and milled PZT piezoceramics particles, as well as presintered piezoceramic granules, are used as matrix and filling components, respectively. Sets of complex elastic, dielectric, and piezoelectric parameters of piezocomposites are measured. The microstructure of the obtained ceramic composites is investigated.  相似文献   

13.
提出了一个0-3型聚合物基铁电复合材料的直流高压极化模型.模型中考虑了聚合物/铁电陶瓷界面处自由电荷的积聚及极化初始时刻的真实情况,利用拉普拉斯静电场方程,并结合边界条件,得到了直流高压极化过程中复合材料的极化强度、界面电流密度等随时间的演化方程,同时得到介电常数、介质损耗等物理特性的表达式.此外,实验制备了分别以环氧树脂E-44和铁电共聚物P(VDF-TrFE)为基体的两种0-3型铁电复合材料.从理论和实验两方面研究了基体电导率对极化行为以及介质损耗的影响.两方面结果均表明:随基体电导率增加,极化时间缩短,陶瓷相的极化强度及复合材料的整体电性能提高,但是漏电流及介质损耗增加.而且实验结果与直流高压极化模型的预测结果符合. 关键词: 铁电复合材料 电导率 极化 介质损耗  相似文献   

14.
A numerical modeling of the magnetoelectric (ME) effect in the bilayer structures lead zirconate titanate (PZT)/lanthanum strontium manganite (LSMO), PZT/nickel ferrite (NFO) and PZT/cobalt ferrite (CFO) is investigated for both static and dynamic behaviors. Mainly, this work focuses on the ME coupling of the rectangular bilayer structures at the electromechanical resonance (EMR) and predicts a resonance frequency that is found to increase with the decrease of length and the rise of PZT volume fraction. The calculated ME voltage coefficients versus frequency profiles for these three samples show a strong resonance character and the values at the EMR are about 200 times the values far from the EMR state. The estimated resonance frequencies are both at about 120 kHz for 15-mm-long NFO/PZT and CFO/PZT bilayers with PZT volume fraction v=0.25. Furthermore, the relevant experiments were carried out to verify the numerical results. PACS 75.80.+q; 75.50.Gg; 75.60.-d  相似文献   

15.
PZT/epoxy resin composites of combined 0–3 and 1–3 connectivities were fabricated, for the first time, using suction, dice and fill techniques. Two types of composites (PZT(m)/epoxy resin and PZT(sp)/epoxy resin) were produced using PZT powders prepared by mixed oxide and spray-drying methods. Physical, mechanical, dielectric and piezoelectric properties of the composites were examined. Generally, overall results between the two composites were found to be very similar (volumetric changes ∼34–37%, d33∼20.2–25.3 pC/N, Kp∼0.54–0.61). Higher density was found in PZT(sp)/epoxy resin, however, due to better packing of particles. Moreover, both PZT/epoxy resin composites exhibited very low acoustic impedance (Z∼4.12–4.84 Mrayls), which is very close to that of human tissue and water. Therefore, these new composites may be suitable for use in medical applications. PACS 81.05.Qk; 81.05.Zx; 77.87.-s  相似文献   

16.
Richard C  Goujon L  Guyomar D  Lee HS  Grange G 《Ultrasonics》2002,40(1-8):895-901
1.3 PZT-polymer composites were fabricated using the dice and fill method with various PZT types and volume fractions. These composites were evaluated for power underwater transducer applications with an air backed and no matching layer configuration. Electrical input and acoustical output powers were monitored as a function of the drive level. Total acoustic power densities of 30 W/cm2 were obtained with a P189/epoxy piezocomposite vibrating at 350 kHz with a low duty cycle (1-5%) and with a 90% efficiency. Power densities up to 20 W/cm2 were measured with a 50% duty cycle. Evolution and destruction of the transducers were monitored versus increasing averaged power. It was observed that better efficiencies were obtained with low volume fraction configurations allowing natural acoustic impedance matching to water. It was found that hard PZT type (Navy III) are optimal compositions even for piezocomposite transducers. It is shown that, unlike a common belief, the polymer mechanical losses are comparable to those of the active ceramic justifying that 1.3 piezocomposites are suited for low-cost power applications. In fact, the main limitation induced by the polymer phase is a strong thermal breakdown when the temperature of the transducer approaches the glass transition region of the polymer. Measurements of the polymer losses as a function of the temperature were obtained confirming this point and offering interesting new alternatives for future composite power transducers.  相似文献   

17.
Resonant modes and magnetoelectric performance of layered PZT/Ni and Ni/PZT/Ni cylindrical composites are considered. The first and the second resonant frequencies in the 1–150 kHz range correspond to the axial and the radial modes. Experimental results and theoretical analysis indicate that one should choose the trilayered structure and the first resonant frequency as the working frequency. This study is helpful in design and applications of magnetoelectric devices.  相似文献   

18.
Lead-free piezoelectric 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 ceramics(abbreviated as BNKBT-5) rings were fabricated using a conventional mixed oxide method. The ceramics have a piezoelectric constant d33=168 pC/N, electromechanical coupling factors kp=0.313 and kt=0.487. The BNKBT lead-free ceramic rings were used as the transduction elements in a compressive type accelerometer and its performance compared with a lead zirconate titanate (PZT) APC 840 ceramic accelerometer with similar structure. The lead-free accelerometer shows good performance and has a broader frequency response compared to the lead-based PZT accelerometer. PACS 77.22.Ej; 77.84.-s; 85.50.-n  相似文献   

19.
1-3型压电复合材料   总被引:9,自引:2,他引:7       下载免费PDF全文
1-3型压电复合材料是目前研究和应用得比较广泛的一种压电材料.本文简述了这种压电复合材料的理论模型、制作方法和实验结果;指出除了圆形PZT压电材料所具有的径向模和厚度模以外,1-3型压电复合材料还具有横向结构模.本文介绍了这种压电复合材料的特点,如低声阻抗、低介电常数、高静水压压电常数以及PZT相分布的可控制性等.这些特点有利于改善压电复合材料换能器的时间响应和空间响应.  相似文献   

20.
《Current Applied Physics》2019,19(12):1367-1373
Due to the urgent demands for high-Curie temperature (TC/Tm) piezoelectric materials in geothermal exploration, aerospace and related fields, high-TC/Tm ferroelectrics have attracted booming research attention. The high-Tm 0.25Bi(Ni1/2Ti1/2)O3-0.75 Pb(Zr1/2Ti1/2)O3 (0.25BNT-0.75PZT) ceramics were prepared by solid-state sintering method and via partial oxalate route, where the 0.25BNT-0.75PZT ceramics prepared via the partial oxalate route exhibit better electrical properties (Tm = 232 °C (10 kHz), εm = 10963, Pr = 26.14 μC/cm2, Ec = 15.61 kV/cm, d33 = 521 pC/N, d33* = 553.3 pm/V, Kp = 47.1%, and Qm = 21.6). The nano-scale domain configuration of the ceramics was revealed by piezoelectric force microscopy (PFM), and the relationship between the micro-structure and macro-electrical properties was analyzed. The ferroelectric phase transition mechanism was studied by temperature dependent Raman spectroscopy. The reduction of energy barrier of lattice distortion and polarization deflection is caused by nanometer-sized domain structure, low symmetric polar nano-regions and/or coexistence of multi-ferroelectric phases, contributing to the excellent electrical properties of the 0.25BNT-0.75PZT ceramics prepared via the partial oxalate route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号