首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple spherical head and pulsating spherical sound source model are proposed to investigate the effect of multiple scattering between the head and the sound source on near-field head-related transfer function (HRTF) measurement. Multipole expansion method is used to calculate HRTFs of the model, then the relationships among the magnitude error of HRTF with frequency, source direction, source size, and the distance between the head centre and the sound source are analysed. The results show that to ensure the magnitude error of HRTF within 1.0dB up to 20kHz, for source distance not less than 0.15m or 0.20m, the radius of the sound source should not exceed 0.03m or 0.05m, respectively. The conclusion suggests an appropriate size of sound source in near-field HRTF measurement.  相似文献   

2.
Sound localization can be controlled by using head related transfer functions (HRTFs), which are related to the size of the head, the ears and so on. Since HRTFs are characterized by source directions and subjects, it is necessary to conduct measurements in all directions for all subjects. However, such measurement is expensive and time-consuming. In this paper, we propose a simpler and more useful method that investigates the relationship between HRTFs and physical size by multiple regression analysis. The estimated HRTFs are evaluated by objective and subjective measures. For objective results, the average spectral distortion score is 4.0 dB in a bandwidth ranging from 0 to 8 kHz. Subjective results indicate no significant difference between the measured and the estimated HRTFs in that frequency range. These results support the hypothesis that the proposed method is effective for estimating HRTFs.  相似文献   

3.
Near-field head-related transfer functions(HRTFs) are essential to scientific researches of binaural hearing and practical applications of virtual auditory display. High efficiency, accuracy and repeatability are required in a near-field HRTF measurement. Hence,there is no reference which intents on solving the measuring difficulties of near-field HRTF for human subjects. In present work, an efficient near-field HRTF measurement system based on computer control is designed and implemented, and a fast calibration method for the system is proposed to first solve the measurement of near-field HRTF for human subjects. The efficiency of measurement is enhanced by a comprehensive design on the acoustic, electronic and mechanical parts of the system. And the accuracy and repeatability of the measurement are greatly improved by carefully calibrating the positions of sound source, subject and binaural microphones.This system is suitable for near-field HRTF measurement at various source distances within 1.0 m, for both human subject and artificial head. The time costs of HRTF measurement at a single sound source distance and full directions has been reduced to less than 20 minutes. The measurement results indicate that the accuracy of the system satisfies the actual requirements.The system is applicable to scientific research and can be used to establish an individualized near-field HRTF database for human subjects.  相似文献   

4.
余光正  谢菠荪  饶丹 《声学学报》2012,37(4):378-385
采用球形正十二面体声源及其空间定位系统,测量并建立了KEMAR人工头的近场头相关传输函数(HRTF)数据库。基于数据库分析了近场HRTF在频域和时域随声源距离变化的规律;讨论了用近场HRTF算得的双耳声级差(TLD)和双耳时间差(ITD)所包含的声源距离定位信息。结果表明,测量系统和所得数据具有较好的重复性和准确性,保留了1 kHz以下的低频定位信息。并且,近场HRTF幅度谱和ILD随声源距离的变化明显;用相关法算得2 kHz以下频段的ITD随声源距离略有变化。本文数据库及其分析结果将为声源距离定位的应用提供基础。   相似文献   

5.
Sound localization cues generally include interaural time difference, interaural intensity difference, and spectral cues. The purpose of this study is to investigate the important spectral cues involved in so-called head related transfer functions (HRTFs) using a combination of HRTF analyses and a virtual sound localization (VSL) experiment. Previous psychoacoustical and physiological studies have both suggested the existence of spectral modulation frequency (SMF) channels for analyzing spectral information (e.g., the spectral cues coded in HRTFs). SMFs are in a domain related to the Fourier transform of HRTFs. The relationship between various SMF regions and sound localization was tested here by filtering or enhancing HRTFs in the SMF domain under a series of conditions using a VSL experiment. Present results revealed that azimuth localization was not significantly affected by HRTF manipulation. Applying notch filters between 0.1 and 0.4 cyclesoctave or between 0.35 and 0.65 cyclesoctave resulted in significantly less accurate elevation responses at low elevations, while spectral enhancement in these two SMF regions did not produce a significant change in sound localization. Likewise, low-pass filtering at 2 cyclesoctave did not significantly influence localization accuracy, suggesting that the major cues for sound localization are in the SMF region below 2 cyclesoctave.  相似文献   

6.
The reliability of algorithms for room acoustic simulations has often been confirmed on the basis of the verification of predicted room acoustical parameters. This paper presents a complementary perceptual validation procedure consisting of two experiments, respectively dealing with speech intelligibility, and with sound source front–back localisation.The evaluated simulation algorithm, implemented in software ODEON®, is a hybrid method that is based on an image source algorithm for the prediction of early sound reflection and on ray-tracing for the later part, using a stochastic scattering process with secondary sources. The binaural room impulse response (BRIR) is calculated from a simulated room impulse response where information about the arriving time, intensity and spatial direction of each sound reflection is collected and convolved with a measured Head Related Transfer Function (HRTF). The listening stimuli for the speech intelligibility and localisation tests are auralised convolutions of anechoic sound samples with measured and simulated BRIRs.Perception tests were performed with human subjects in two acoustical environments, i.e. an anechoic and reverberant room, by presenting the stimuli to subjects in a natural way, and via headphones by using two non-individualized HRTFs (artificial head and hearing aids placed on the ears of the artificial head) of both a simulated and a real room.Very good correspondence is found between the results obtained with simulated and measured BRIRs, both for speech intelligibility in the presence of noise and for sound source localisation tests. In the anechoic room an increase in speech intelligibility is observed when noise and signal are presented from sources located at different angles. This improvement is not so evident in the reverberant room, with the sound sources at 1-m distance from the listener. Interestingly, the performance of people for front–back localisation is better in the reverberant room than in the anechoic room.The correlation between people’s ability for sound source localisation on one hand, and their ability for recognition of binaurally received speech in reverberation on the other hand, is found to be weak.  相似文献   

7.
Transfer effects of playing an auditory game with a virtual auditory display (VAD) were investigated. Furthermore, we analyzed the effects of playing the VAD game on sound localization performance under subjects’ own head-related transfer functions (HRTFs) and HRTFs fitted from those of 16 other adults. Participants performed sound localization tasks initially and 2 weeks later to show the effects. The VAD game players were of three groups, using own HRTFs, fitted HRTFs, and no playing (control). The VAD game-playing results revealed that: (1) the hit rate of the sound localization task for real sound sources increased approximately 20%; (2) the vertical and horizontal localization error decreased significantly; (3) sound localization performance using fitted HRTFs was similar to performance using own HRTFs. Follow-up tests revealed that transfer effects persisted more than 1 month, suggesting that the effects of playing the VAD game transfer to sound localization performance.  相似文献   

8.
余光正  刘昱  谢菠荪 《声学学报》2017,42(3):348-360
近场头相关传输函数(HRTF)是双耳听觉科学研究和虚拟听觉重放应用的重要基础数据。近场HRTF测量系统要求具有高的测量效率、精度和重复性,以至于目前未见文献解决真人受试者的近场HRTF测量困难。本文研究并实现了一种计算机控制的近场HRTF的高效测量系统,并提出系统的快速校准方法,首先实现了真人受试者的近场HRTF测量。通过声学、机械与电子硬件和软件的综合设计,提高了测量效率。通过准确校准声源、受试者和双耳传声器的位置,提高了测量精确度和重复性。系统可用于1.0 m范围内不同声源距离的真人受试者以及人工头的近场HRTF测量,单个声源距离的全空间近场HRTF测量时间减少至20 min以内。测量结果表明,系统测量精度满足实际需求,可用于科学研究和个性化近场HRTF测量及数据库建立。   相似文献   

9.
Estimating the direction of a sound source is an important technique used in various engineering fields, including intelligent robots and surveillance systems. In a household where a user’s voice and noises emitted from electric appliances originate from arbitrary directions in 3-D space, robots need to recognize the directions of multiple sound sources in order to effectively interact with the user.This paper proposes an ear-based estimation (localization) system using two artificial robot ears, each consisting of a spiral-shaped pinna and two microphones, for application in humanoid robots. Four microphones are asymmetrically placed on the left and right sides of the head. The proposed localization algorithm is based on a spatially mapped generalized cross-correlation function which is transformed from the time domain to the space domain by using a measured inter-channel time difference map. For validation of the proposed localization method, two experiments (single- and multiple-source cases) were conducted using male speech. In the case of a single source, with the exception of laterally biased sources, the localization was achieved with an error of less than 10°. In a multiple-source environment, one source was fixed at the front side and the other source changed its direction; from the experimental results, the error rates on the localization of the fixed and varying sources are 0% and 36.9% respectively within an error bound of 15°.  相似文献   

10.
Active control of radiation from a piston set in a rigid sphere   总被引:2,自引:0,他引:2  
Active control of the sound radiated from a piston set in a rigid sphere with a set of control point sources around is considered in this paper, where the scattering sound field of the control sound from the rigid sphere has been taken into account to minimize the total radiated sound power. Analytic results of the sound power are obtained and numerical simulations show that it is possible to reduce the radiation from a small piston set in a rigid sphere similar to the size of a human head up to a certain frequency. It is found that the introduction of the scattering object makes significant differences from the active control without scattering objects. This being the case, the scattering object makes the active noise control easier. To increase the global reduction of sound-power output, the optimal number and locations of the control sources and the optimal number and locations of error sensors are discussed. Finally, experiments with one control source and one error sensor around a head simulator have been carried out to verify the simulation results.  相似文献   

11.
双扬声器近场声源重放实验研究   总被引:1,自引:0,他引:1  
该文针对电子器件散热用的一款变速轴流风扇的气动噪声及其降噪方法进行实验研究。首先利用风扇旋转轴等高平面内圆周分布的传感器阵列测量风扇不同转速下远场噪声分布,总声压级与转速的对数关系验证散热风扇主要气动噪声属于偶极源噪声,频谱分析显示离散单音噪声为主要噪声影响因素。基于管道声学理论的管道模态截止方法,研究进出风口安装圆形短管对风扇气动噪声的影响,实验结果显示不同位置、不同长度的短管对风扇远场噪声影响不同。额定转速下,在进风口安装2 cm管道可以使远场1 m处平均总声压级下降4.1 dB(A),降噪效果显著。模态测量结果显示,此种情况下对应离散单音处的风扇主要模态幅值大大降低,风扇离散单音噪声降低从而噪声总声压级大幅减小。该方法为散热风扇降噪提供了一种新的途径。  相似文献   

12.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

13.
针对混响环境中,多径效应、散射、衍射等原因导致声源定位失败或分辨能力不足的现象,提出一种基于主导声源检测MUSIC群时延的邻近多声源定位方法。该方法采用球形传声器阵列,相比平面阵列可以捕获3D声场信息,利用球谐域下信号的频率分量与角度分量解耦的优势,从而可直接利用频率平滑技术处理宽带语声信号而不需要构造聚焦矩阵,并在球谐域下通过设置阈值对一组时频段进行主导声源检测,从而选择出包含直达声的一组时频块来构造MUSIC群时延空间谱。上述举措在提升波达方向估计在高混响环境下定位鲁棒性的同时,也提高了多个邻近声源的分辨能力。仿真实验结果表明,所提出的主导声源检测MUSIC群时延算法,在高混响和低信噪比条件下,仍具有更好的定位精度与更优的邻近多声源分辨效果。  相似文献   

14.
The paper reports on the ability of people to rapidly adapt in localizing virtual sound sources in both azimuth and elevation when listening to sounds synthesized using non-individualized head-related transfer functions (HRTFs). Participants were placed within an audio-kinesthetic Virtual Auditory Environment (VAE) platform that allows association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues through the use of a tracked physical ball manipulated by the subject. This set-up offers a natural perception-action coupling, which is not limited to the visual field of view. The experiment consisted of three sessions: an initial localization test to evaluate participants' performance, an adaptation session, and a subsequent localization test. A reference control group was included using individual measured HRTFs. Results show significant improvement in localization performance. Relative to the control group, participants using non-individual HRTFs reduced localization errors in elevation by 10° with three sessions of 12 min. No significant improvement was found for azimuthal errors or for single session adaptation.  相似文献   

15.
鲁毅  柳小勤  伍星  刘畅  刘韬 《声学学报》2020,45(3):377-384
目前在远场识别声源空间位置和强度缺乏行之有效的方法。针对此问题,提出采用四传声器进行三维声强测量,从而构建出声强、声源坐标和声功率的非车线性方程组,求解方程得出声源空间坐标和强度的方法。以3个三维声强探头对两个同频率单极子声源的识别为例,分别利用数值仿真和半消声室内的实验进行方法验证,并对声源的识别空间分辨率做了测试,得出角度识别最大误差为3.83°,为真实值的8.5%,距离识别最大误差0.1 m,为真实距离的10%。结果表明采用该方法空间坐标和声功率识别均具有很高的准确度,双声源的空间位置分辨力也优于远场声全息方法。   相似文献   

16.
The synthesis of individual virtual auditory space (VAS) is an important and challenging task in virtual reality. One of the key factors for individual VAS is to obtain a set of individual head related transfer functions (HRTFs). A customization method based on back-propagation (BP) artificial neural network (ANN) is proposed to obtain an individual HRTF without complex measurement. The inputs of the neural network are the anthropometric parameters chosen by correlation analysis and the outputs are the characteristic parameters of HRTFs together with the interaural time difference (ITD). Objective simulation experiments and subjective sound localization experiments are implemented to evaluate the performance of the proposed method. Experiments show that the estimated non-individual HRTF has small mean square error, and has similar perception effect to the corresponding one obtained from the database. Furthermore, the localization accuracy of personalized HRTF is increased compared to the non-individual HRTF.  相似文献   

17.
The paper evaluates the human directional resolution of virtual sound sources synthesised with the aid of a generalised head related impulse response (HRIR) library, i.e., an HRIR library measured using a dummy head and torso. The original HRIR set is first expanded using linear interpolation, and then directional resolution measurements are performed for playback through headphones. These results are compared to the results obtained using loudspeakers as sound sources in an anechoic chamber. Directional resolution is the ability of listeners to distinguish two closely-spaced sound sources alternately playing the same signal. Experiments show that two sound sources with insufficient spacing appear as a single source to the listener. Directional resolution for small azimuth changes is relatively high for both virtual and real sound sources. Most test subjects have no problem resolving two sound sources only 5° apart. Compared to real sound sources, detecting changes in elevation of virtual sound sources is much less accurate, which may be the main drawback of using a generalised HRIR library.  相似文献   

18.
In this paper an analysis of moving sound source localization via headphones is presented. Also the influence of the inter-click interval on this localization is studied. The experimental sound is a short delta sound of 5 ms, generated for the horizontal frontal plane, for distances from 0.5 m to 5 m and azimuth of 32° to both left and right sides with respect of the middle line of the listener head convolutioned with individual HRTFs. The results indicate that the best accurate localization was achieved for the ICI of 150 ms. Comparing the localization accuracy in distance and azimuth is deduced that the best results have been achieved for azimuth. The results show that the listeners are able to extract accurately the distance and direction of the moving sound for larger inter-click intervals.  相似文献   

19.
岳舒  侯宏  于佳雨  王谦 《声学学报》2021,46(2):246-254
为了解决水下声源辐射声功率难以计算的问题,利用线阵声强缩放方法在波束形成声源识别的基础上,根据波束输出结果与声源辐射声功率之间的换算关系来获得相应的声功率。为了提高线阵声强缩放方法的水下声功率估算精度,给出了一定动态范围限制的主瓣区域积分方法,并通过仿真验证了该方法的有效性。在消声水池中开展了水下声功率估算的实验研究。在不同的测试距离下,对双声源条件下的单频以及宽带声源在阵列侧的辐射声功率进行了估算,以混响法的测量结果为参考值,研究了估算误差随声源频率、测试距离等影响因素的变化规律。实验结果表明,无论是单频还是宽带声源,声功率的最大估算误差不超过2.6 dB,在高频时不超过1.6 dB。验证了线阵声强缩放方法应用于水下声源辐射声功率估算的正确性与可行性。   相似文献   

20.
An efficient method for head-related transfer function (HRTF) measurement is presented. By applying the acoustical principle of reciprocity, one can swap the speaker and the microphone positions in the traditional (direct) HRTF measurement setup, that is, insert a microspeaker into the subject's ear and position several microphones around the subject, enabling simultaneous HRTF acquisition at all microphone positions. The setup used for reciprocal HRTF measurement is described, and the obtained HRTFs are compared with the analytical solution for a sound-hard sphere and with KEMAR manikin HRTF obtained by the direct method. The reciprocally measured sphere HRTF agrees well with the analytical solution. The reciprocally measured and the directly measured KEMAR HRTFs are not exactly identical but agree well in spectrum shape and feature positions. To evaluate if the observed differences are significant, an auditory localization model based on work by J. C. Middlebrooks [J. Acoust. Soc. Am. 92, 2607-2624 (1992)] was used to predict where a virtual sound source synthesized with the reciprocally measured HRTF would be localized if the directly measured HRTF were used for the localization. It was found that the predicted localization direction generally lies close to the measurement direction, indicating that the HRTFs obtained via the two methods are in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号