首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on a one-camera/one-shot procedure able to get the whole deformation map of hyperelastic tubular samples. A challenging application of this approach is the investigation of the highly anisotropic and inhomogeneous arterial tissue mechanical response during inflation/extension tests. To address this issue, full field optical methods based on digital correlation (DIC), fringe projection (FP) and stereo-photogrammetry (SP) have been already proposed in literature to overcome limitations of the most widely adopted 2-D video dimension analyzer (VDA) systems.In this paper, the feasibility of a very straightforward full-field procedure that uses radial metrology concepts has been studied. The rationale behind the proposed method relies on the relation existing between image deformation of a world point reflected by a 45° concave conical mirror and the relative position of this point with respect to the specular surface. Under certain assumptions reasonably true for the application of interest, by using simple relationships, it is possible to retrieve the position of markers applied onto the sample surface with great precision. This procedure has several advantages such as the retrieval of the whole 360° surface map in one shot, the ease of application, the use of one single camera, the real-time measurement capability. Conversely, the proposed approach is suitable only for geometries with smooth transversal sections, needs sample preparation and its spatial resolution is limited by the sparsity of the surface control points.The paper describes first the theoretical basis of the procedure; then results of experimental tests on calibration samples and latex tubular specimens are presented and discussed. Further set-up improvements will allow the present procedure to be implemented for in-vitro inflation/extension tests on vascular segments.  相似文献   

2.
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.  相似文献   

3.
In this paper, digital speckle correlation is used in the measurement of Ti alloy compression and tension test. The key technologies applied in the measurement are discussed in detail, including camera calibration with telephoto lens and digital image correlation in large deformation. Single camera self-calibration algorithm based on photogrammetry is proposed. In the algorithm, the interior parameters of camera are estimated without calibrated object, using the bundle adjustment technique, so the 3-D coordinates of calibration target points are not needed in advance to get a reliable camera calibration result. An updating reference image scheme could be employed to deal with large deformation situation. A large deformation measurement scheme, updating reference image scheme, is proposed in this paper. The un-deformed image is used as reference in correlation at first. Only for extremely large deformation field, in which iteration of correlation is not convergent, the reference image is updated to the image of previous deformed stage. Using this method, not only extremely large deformation can be measured successfully but also the accumulated error could be controlled. The 75 mm lens is calibrated in the measurement and compared the result with extensometer and un-calibrated image. Experimental results show that up to 150% tensile deformation and 50% compression deformation can be measured successfully.  相似文献   

4.
An optical coherence microscopy system based on line illumination and detection is demonstrated. The system uses a Linnik-type interferometer illuminated by a broadband Ti:sapphire laser and detected by a high-speed, line-scan CCD camera. This approach is less sensitive to incoherent scattering and sample motion than full-field imaging. Spatial resolutions of approximately 2 microm x approximately 3 microm(transverse x axial) are achieved. The sensitivity of the system is 93 dB with averaging over 30 line scans. En face real time, cellular-level imaging of biological tissues is demonstrated at approximately 2 frames/s.  相似文献   

5.
We describe a stabilized homodyne full-field interferometer capable of measuring vertical surface deformations of microstructures in the time domain. The interferometer is stabilized to a chosen operation point by obtaining a feedback signal from a non-moving, freely selectable, reference region on the sample surface. The stabilized full-field interferometer enables detection of time-dependent changes in the surface profile with nanometer scale vertical resolution, while the temporal resolution of the measurement is ultimately limited by the refresh rate of the camera only. The lateral resolution of the surface deformation is determined by the combination of the imaging optics together with the pixel size of the camera. The setup is used to measure the deformation of an Aluminum nitride membrane as a function of time-dependent pressure change. The data analysis allows for unambiguous determination of surface deformations over multiple fringes of the interferogram, hence enabling the study of a wide range of physical phenomena with varying magnitude of vertical surface movement.  相似文献   

6.
Digital holographic microscopy using multiframe full-field heterodyne technology is discussed in which two acousto-optic modulators are applied to generate low-frequency heterodyne interference and a high-speed camera is applied to acquire multiframe full-field holograms. We use a temporal frequency spectrum analysis algorithm to extract the object's information. The twin-image problem can be solved and the random noise can be significantly suppressed. The relationship between the frame number and the reconstruction accuracy is discussed. The typical objects of microlenses and biology cells are reconstructed well with 100-frame holograms for illustration.  相似文献   

7.
指纹识别是一种广泛应用的生物特征识别技术,但现有指纹身份识别装置由于容易被指纹膜欺骗而存在安全问题,手指表面弄脏、太湿或者磨损也会导致识别失效,存在鲁棒性差的问题。手指内部220~550 μm的皮肤层,具有表面(外部)指纹相同的拓扑特征。这些内部层,充当“主模板”导致外部指纹按照它的形状生长,另外,手指内部的汗腺和微血管结构也和指纹有跟随形状。这些皮下指纹,和对应层面的汗腺等组织结构,具有终生不变性,我们称之为内指纹。内指纹难以仿制,可以用于准确而高度鲁棒的生物身份识别。但是目前报道的用扫频层析术获得内指纹图像,由于对二维正面图像提取需要扫描,并最终从三维指纹结构中重构正面图像,数据量大,提取速度太慢,限制了其实用性。提出一种基于宽光谱干涉显微术的手指皮肤下内部指纹成像系统,以宽光谱弱相干白光激光实现3.5 μm轴向分辨率,采用低数值孔径的光路提高了穿透深度,利用光源空间非相干性和阵列探测器无需扫描一次性获得6.14 mm×6.14 mm的内指纹图像,实现了0.4 s每帧的快速读取,并以三维分层图像展示了手指内部指纹,及其汗腺结构等特征,该工作确认了宽广谱干涉显微术快速提取内指纹用于生物识别的可行性,为高安全度生物识别提供了新方法。  相似文献   

8.
Digital speckle three-shearing-aperture interferometry used for the measurement of curvature distribution fields of a deformation object is proposed for the first time. In this method, pure curvature distribution fringes without containing slope distribution fringes can be obtained by using digital speckle three-shearing-aperture interferometry. Two specklegrams, one before and the other after object deformation, are recorded by a CCD camera and stored in a computer. A 2-D fast Fourier transform (FFT) and a 2-D inverse FFT (IFFT) are performed on the two specklegrams. The subtraction of the transformed specklegrams will produce curvature distribution fringes, and the speckle noises in curvature distribution fringes can be removed after these fringes pass through low-pass filtering. Results from theory and experiments are in good agreement.  相似文献   

9.
Conventional digital image correlation (DIC) technique using a fixed reference image provides high-accuracy measurements but normally fails when serious decorrelation effect occurs in the deformed images due to large deformation, serious illumination fluctuations or other reasons. In this paper, an incremental reliability-guided digital image correlation (RG-DIC) technique, by combining the recently developed RG-DIC technique and an automatic reference image updating scheme, is proposed for large deformation measurement. In the incremental RG-DIC technique, a seed point is defined in the original reference image and searched in the deformed images, if the estimated correlation coefficient is larger than a preset threshold, which means no serious decorrelation effect exists in the deformed image, the RG-DIC technique is used to continue correlation analysis to obtain full-field displacements. Otherwise, the image recorded just before the current deformed image is chosen as an updated reference image to proceed with correlation analysis. Afterwards, the incremental displacements extracted by comparing the current deformed image and the updated reference image can be cumulated to determine the overall deformation. The effectiveness of the proposed technique is demonstrated by retrieving the full-field deformation of a foam sample subjected to large compressive deformation.  相似文献   

10.
Eryi Hu  Yu Hua 《Optics Communications》2009,282(15):3047-3051
3-D profile measurement of a moving object using a novel phase-shifting technique is introduced. Digital gratings with two steps phase-shifting are projected periodically onto a measured object surface. The deformed fringe patterns are captured by a frame CCD camera within a short exposure time. By synchronizing the projector and the CCD camera accurately, there is an overlapping part which is the same part of the object among three neighbouring frames. The length of an overlapping part can be controlled as one third of a frame length. Hence the intensity values at the same surface point modulated by three neighbouring gratings can be obtained, and its phase value can be computed by an improved phase-extracting algorithm. The profile of a specimen is detected by the proposed method. Experimental results demonstrate that this method is effective for the profile measurement of a moving object.  相似文献   

11.
周易非  原媛  刘文白  孔戈  高建卫 《应用光学》2020,41(6):1197-1206
为表征隐框玻璃幕墙面板在复杂边界条件与风荷载作用下产生的不对称挠曲变形并进行安全性评估,采用数字图像相关技术对幕墙样品进行非接触式全场测量。通过重建面板的空间挠曲形貌,建立基于面法线距离、表面高斯曲率、面内大主应变与应变能密度分布的玻璃幕墙抗风压性能综合评估方法。计算结果表明:初始形貌与结构耦合作用下面板挠曲后的最大面法线距离为6.02 mm,小于现行标准实验计算结果,幕墙的实际抗风压性能更优秀;面板四角区域呈双曲抛物面变形,同样存在安全隐患,在左上角出现全场最大面内大主应变257 με。因此该方法避免了传统仪器受限于指定测点数据的缺陷,能够反映玻璃面板变形的全场时空动态变化,为表征隐框玻璃幕墙的抗风压性能提供便捷且有效的技术手段。  相似文献   

12.
To describe the material behaviour at high strain rates dynamic experimental tests are necessary, and appropriate constitutive models are to be calibrated accordingly. A way to achieve this is through an inverse procedure, based on the minimization of an error function calculated as the difference between experimental and numerical data coming from Finite Element analysis. This approach, widely used in the literature, has a heavy computational cost associated with the minimization process that requires, for each variation of the material model parameters, the execution of FE calculations. In this work, a faster but yet effective calibration procedure is studied Experimental tests were performed on an aluminium alloy AA6061-T6, by means of a direct tension-compression Split Hopkinson bar. A fast camera with a resolution of 192 × 128 pixels and capable of a sample rate of 100,000?fps captured images of the deformation process undergone by the samples during the tests. The profile of the sample obtained after the image binarization and processing, was postprocessed to derive the deformation history; afterwards it was possible to calculate the true stress and strain, and carry out the inverse calibration by analytical computations. The results of this method were compared with the ones coming from the Finite Element approach.  相似文献   

13.
The article presents results of research developing methods for determining thermal parameters of a thermal insulating material. This method applies periodic heating as an excitation and an infrared camera is used to measure the temperature distribution on the surface of the tested material. The usefulness of known analytical solution of the inverse problem was examined in simulation study, using a three-dimensional model of the heat diffusion phenomenon in the sample of the material under test. To solve the coefficient inverse problem an approach using an artificial neural network is proposed. The measurements were performed on an experimental setup equipped with a ThermaCAM PM 595 infrared camera and a frame grabber. The experiment allowed verification of the chosen 3-D model of the heat diffusion phenomenon and proved suitability of the proposed test method.  相似文献   

14.
In small punch testing, with approximate preknowledge of the sample deformation, profile measurement need only be made at selected locations in depth. To date, profilometry through full-field low-coherence interferometry has not been applied to small punch testing—conventional methods typically measure the maximum displacement as the sample is deformed, ignoring useful shape and profile information. A modification of full-field low-coherence interferometry is presented, where a digital stepper motor is combined with piezoelectric transducer scanning to achieve random depth access three-dimensional micrometer profile measurement. Offering a rapid, inexpensive, and functional machine vision system, the measurement technique is applied to a small punch test.  相似文献   

15.
We introduce a full-field fluorescence imaging technique with axial confinement of about 100 nm at the sample/substrate interface. Contrary to standard surface imaging techniques, this confinement is obtained through emission filtering. This technique is based on supercritical emission selectivity. It can be implemented on any epifluorescence microscope with a commercial high numerical aperture objective and offers a real-time surface imaging capability. This technique is of particular interest for live cell membrane and adhesion studies. Using human embryonic kidney cells, we show that one can observe simultaneously the surface and in-depth cell phenomena.  相似文献   

16.
A new magnetic resonance imaging technique was applied to the Taylor-Couette and spiral Poiseuille (Taylor-Couette with superposed mean axial flux) flows for the first time. The experimental technique is a combination of spatial tagging methods and a snapshot FLASH imaging sequence, which allows the full-field visualization of 2-D slices of the flow field, with image acquisition times approximately half a second. By acquiring images every few seconds, direct visualization of flow patterns can be obtained in the form of cinematography. Tagged images of the Taylor-Couette flow were acquired in both the axial and transverse planes and confirmed previously reported numerical predictions of Taylor cell size. Tagged images of the spiral Poiseuille flows verified that the cells in this flow propagate at a higher velocity than the mean axial flow. In addition, intermittent cell formation was observed as the axial flow was increased.  相似文献   

17.
The current work deals with the use of high-frequency quantitative backscatter acoustic microscopy for the evaluation of the biointegration of microporous polymer implants used as support of artificial cornea. A three-dimensional (3-D) 80 MHz ultrasound microscope (25 microns axial resolution at focus) was used for the imaging and characterization of the progressive biointegration of polymers implanted in rabbit cornea. In-vitro and in-vivo studies were performed. Quantitative assessment of the structural changes in the biomaterial was performed using the spectral analysis of the radio frequency signal and the estimation of acoustic parameters in the 10-65 MHz frequency bandwidth. Correlation of in-vitro ultrasound data with histologic findings has shown that attenuation and backscatter coefficients are sensitive to the changes in the polymer pore content with time. Our results obtained in vivo demonstrated that 3-D 80 MHz echography coupled with quantitative characterization provide a unique tool for the non-invasive and objective follow-up of the implant biointegration and should contribute to clinical management of artificial cornea.  相似文献   

18.
A polarization-sensitive Fourier domain optical coherence tomography (PS-FD-OCT) system has been developed. By using a two-dimensional CCD camera, this PS-FD-OCT simultaneously obtains two spectral interferograms corresponding to orthogonal polarization components of a probing beam. FD-OCT avoids axial mechanical scanning, therefore, two OCT images are obtained by a single lateral scanning. This system requires only two one-dimensional scannings for determining the Müller matrix images of a sample. In the Müller matrix images, the birefringence properties of the inner surface of a porcine esophagus are revealed.  相似文献   

19.
小型连续变焦相机的结构实现   总被引:1,自引:0,他引:1       下载免费PDF全文
苗健宇  张立平  翟岩  梅贵 《中国光学》2014,7(1):169-174
介绍了一种小型大变倍比变焦相机的主要技术参数,以及采用的变焦方法;详细描述了相机的组成结构,其中变倍和补偿透镜组通过滑架在主体内滑动,其运动轨迹取决于导钉在凸轮曲线槽内的运动状态;阐述了加工和装调过程中为保证相机设计质量而采取的精度保证措施,凸轮曲线槽与滚子的配合间隙应控制在6~9 μm,确保主体的刚度和圆柱度,变倍和补偿滑架在主体内滑动时的返回空回误差<2″,滑架直径D与滑架长度L之间的比值≥1。经高低温和振动试验后检测结果表明:在50 lp/mm空间频率下,相机光学传递函数>0.2,相机外景成像清晰,层次分明。  相似文献   

20.
Dual-beam digital speckle photography is a non-contacting full-field technique which can measure one strain component at the CCD-camera frequency. The technique uses two symmetrically incident laser beams of different wavelengths and the speckle field for each illumination beam is recorded simultaneously before and after object deformation. The system is designed for strain field measurements in rough environments. In this paper some experiments are performed to investigate the system performance. In a tensile test the measured strain value was found to be in good agreement with the strain given by resistance strain gauges. Experiments at elevated temperature have also been performed, where thermal strain fields were measured at 500°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号