首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的影响。给出了瓶鼻海豚对测试信号产生躲避行为的声压级门限(154±2 dB re 1μPa,rms),并与鼠海豚的躲避声压门限级进行了对比。结果表明:信号发射期,瓶鼻海豚移离了声源位置,增加了露出水面的次数,水下发出click声信号的次数明显减少。因此,瓶鼻海豚对20kHz连续信号产生了行为改变。   相似文献   

2.
魏翀  许肖梅  张宇  牛富强 《声学学报》2014,39(4):452-458
根据频率特性对圈养宽吻海豚(Tursiops truncatus)在自由游动和训练两种实验条件下的声通讯信号进行分类,并利用双尾t检验统计分析方法对两种条件下的信号声谱参数进行统计比较。结果显示,宽吻海豚在自由状态下通讯信号的种类多并以正弦型为主,而训练期间的通讯信号则大多数为上扫频类。此外,统计分析表明起始频率不能反映这两种状态的不同(p=0.22)。结束频率、最小频率、最大频率、频率变化量、拐点数、环形数、阶数、波形数和周期等则显示了两种状态显著的差异性(p<0.05)。结果为今后海豚声行为研究提供一定的科学参考和基础。   相似文献   

3.
为分析圈养印太瓶鼻海豚与所处水环境间的关系,观测和记录了两只圈养印太瓶鼻海豚一年内的发声、行为及水环境温度、盐度及酸碱度。通过时频滤波和分析,筛选出一年中17:00到08:00内海豚发出的正弦型哨叫声。经统计、比对和相关性分析,得到:正弦型哨叫声发生量与海豚不良情绪行为发生量线性正相关(拟合优度R2=93.89%),8月—10月发生频次最多,此时海豚不良情绪行为也最多;该类型信号发生量占比与所处水环境月平均温度和盐度有关,并拟合出它们的关系式(拟合优度R2=68.61%),但受月平均酸碱度影响不大;水环境月平均温度和盐度在一定范围内时,海豚不良情绪行为发生量占比可以控制在12%以下。研究结果为今后利用海豚哨叫声判断海豚生物行为、健康状况、圈养环境舒适度等提供一定的科学参考。   相似文献   

4.
针对宽吻海豚通讯信号自动分类提出了一种基于句法模式识别的方法。该方法首先提取海豚通讯信号基频随时间变化的轨迹曲线,然后提取基频变化的基元序列。根据海豚通讯信号分类的标准,归纳出产生各类海豚通讯信号基频基元序列的文法。对未知类别的海豚通讯信号,提取其基频变化的基元序列,根据各类模式的文法对基元序列进行分类,进而实现海豚通讯信号的自动分类。实验结果显示本文方法的分类准确率达到了95%。本文方法预期为海豚生物学行为的声学研究提供一定的技术支持。   相似文献   

5.
针对圈养条件下瓶鼻海豚通讯信号(whistle)分类时混叠大量回声定位信号(click)导致分类正确率降低的问题,提出了一种基于机器学习的融合分类方法。分别提取whistle信号的时频分布特征训练随机森林分类器,梅尔时频图特征训练卷积神经网络分类器,在此基础上设计融合判决器对混叠whistle信号进行分类识别。对圈养海豚声信号采集实验数据的分类识别结果表明,融合分类方法具有更好的分类性能,对混叠whistle信号分类正确率大于94%,优于时频分布特征分类器和梅尔时频图特征分类器,能够提高混叠信号的分类能力。   相似文献   

6.
采用正交光功率比值的光子型微波频率测量方案设计   总被引:1,自引:0,他引:1  
通过构建两个正交的光功率比值,以光子技术实施微波频率测量.首先,待测微波信号经外调制器加载到连续光源上,在单边带载波抑制调制下仅得到单个光边带;以光学梳状滤波器对其进行滤波处理,在输出端检测得到随微波频率增大而呈现余弦函数和正弦函数变化趋势的两个光功率;将这两个光功率与参考光功率进行比较后,进而得到余弦函数型和正弦函数...  相似文献   

7.
海豚声纳信号的脉冲分解及特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘维  孙尼  尹力 《应用声学》2009,28(6):431-438
提出一种海豚声纳目标探测脉冲串信号的脉冲分解方法,在此基础上对海豚声纳脉冲信号的特征进行了分析,其中包括脉冲宽度、脉冲间隔以及脉冲的时间分辨率和频率分辨率,并采用耳蜗滤波对海豚声纳脉冲串信号的时频特征进行了分析。分析结果表明,探测目标的过程中,根据目标距离的不同,海豚会自适应调节脉冲信号的发射频率和信号形式。  相似文献   

8.
杨昱皞  何瑞麟  戴阳  方亮  贺刘刚 《应用声学》2023,42(5):1042-1051
为在复杂的海洋环境噪声场中检测出目标海豚的某类声信号,设计了一种基于海豚声学特征的端点检测方法。根据海洋环境中噪声能量大且分布频率范围广,而海豚声音的时频特征具有持续时间短,、频率高且集中,、发声行为持续时间长的特点,将采集到的海洋声音进行分帧,计算单帧信号短时能量、谱质心和谱质心二阶偏移率,当海豚发出声信号时,谱质心和能量相应发生突变,截取发生突变的信号实现端点检测。通过与门限法等其他常见端点检测方法进行对比,结果表明,此方法在低信噪比的海洋环境下对单一海豚的某一类声信号检测准确度更高,同时具有较强的抗干扰能力。  相似文献   

9.
谐振型光纤陀螺方波频率调制方法   总被引:7,自引:0,他引:7  
分析了谐振型光纤陀螺(R FOG)方波频率调制方法的工作原理和调制性能,得到了采用方波频率调制时R_FOG的极限灵敏度,并对方波频率调制和正弦频率调制两类调制方法的特性进行了比较。结果表明,方波调制方法的极限灵敏度优于正弦频率调制方法的极限灵敏度,其输出信号为方波强度调制信号,易于与I_FOG中类似的数字解调方法相结合,是实现全数字处理R_FOG的较理想的调制方案。  相似文献   

10.
李承  石丹  邹云屏 《物理学报》2012,61(7):70701-070701
提出了一种新的两层反馈型神经网络模型. 该网络采用正弦基函数作为权值, 神经元激活函数为线性函数, 连接形式为两层反馈型结构. 研究并定义了该反馈型神经网络的能量函数, 分析了网络运行的稳定性问题, 并证明了在Liapunov意义下网络运行的稳定性. 网络运行过程中, 其权值不做调整(但随时间按正弦规律变化), 网络状态不断地转换. 随着网络状态变化其能量不断减小, 最终在达到稳定时能量到达极小点. 由于该反馈型神经网络权值为正弦函数, 特别适合于周期信号的自适应逼近和检测, 为实际中周期性信号检测与处理提供了一种新的、有效的网络模型和方法. 作为应用实例把该网络应用于电力系统中电压凹陷特征量实时检测, 仿真结果表明, 网络用于信号检测不仅有很高的静态精度, 而且有非常好的动态响应特性.  相似文献   

11.
Acoustic communication through whistles is well developed in dolphins. However, little is known on how dolphins are using whistles because localizing the sound source is not an easy task. In the present study, the hyperbola method was used to localize the sound source using a two-hydrophone array. A combined visual and acoustic method was used to determine the identity of the whistling dolphin. In an aquarium in Mexico City where two adult bottlenose dolphins were housed we recorded 946 whistles during 22 days. We found that a dolphin was located along the calculated hyperbola for 72.9% of the whistles, but only for 60.3% of the whistles could we determine the identity of the whistling dolphin. However, sometimes it was possible to use other cues to identify the whistling dolphin. It could be the animal that performed a behavior named “observation” at the time whistling occurred or, when a whistle was only recorded on one channel, the whistling dolphin could be the animal located closest to the hydrophone that captured the whistle. Using these cues, 15.4% of the whistles were further ascribed to either dolphin to obtain an overall identification efficiency of 75.7%. Our results show that a very simple and inexpensive acoustic setup can lead to a reasonable number of identifications of the captive whistling dolphin: this is the first study to report such a high rate of whistles identified to the free swimming, captive dolphin that produced them. Therefore, we have a data set with which we can investigate how dolphins are using whistles. This method can be applied in other aquaria where a small number of dolphins is housed; though, the actual efficiency of this method will depend on how often dolphins spend time next to each other and on the reverberation conditions of the pool.  相似文献   

12.
This paper presents a cross-sectional study testing whether dolphins that are born in aquarium pools where they hear trainers' whistles develop whistles that are less frequency modulated than those of wild dolphins. Ten pairs of captive and wild dolphins were matched for age and sex. Twenty whistles were sampled from each dolphin. Several traditional acoustic features (total duration, duration minus any silent periods, etc.) were measured for each whistle, in addition to newly defined flatness parameters: total flatness ratio (percentage of whistle scored as unmodulated), and contiguous flatness ratio (duration of longest flat segment divided by total duration). The durations of wild dolphin whistles were found to be significantly longer, and the captive dolphins had whistles that were less frequency modulated and more like the trainers' whistles. Using a standard t-test, the captive dolphin had a significantly higher total flatness ratio in 9/10 matched pairs, and in 8/10 pairs the captive dolphin had significantly higher contiguous flatness ratios. These results suggest that captive-born dolphins can incorporate features of artificial acoustic models made by humans into their signature whistles.  相似文献   

13.
Because whistles are most commonly associated with social delphinids, they have been largely overlooked, ignored, or presumed absent, in solitary freshwater dolphin species. Whistle production in the freshwater dolphin, the boto (Inia geoffrensis geoffrensis), has been controversial. Because of its sympatry with tucuxi dolphins (Sotalia fluviatilis), a whistling species, some presume tucuxi whistles might have been erroneously assigned to the boto. Using a broadband recording system, we recorded over 100 whistles from boto dolphins in the Yasunf River, Ecuador, where the tucuxi dolphins are absent. Our results therefore provide conclusive evidence for whistle production in Inia geoffrensis geoffrensis. Furthermore, boto whistles are significantly different from tucuxi whistles recorded in nearby rivers. The Ecuadorian boto whistle has a significantly greater frequency range (5.30-48.10 kHz) than previously reported in other populations (Peru and Colombia) that were recorded with more bandwidth limited equipment. In addition, the top frequency and the range are greater than in any other toothed whale species recorded to date. Whistle production was higher during resting activities, alone or in the presence of other animals. The confirmation of whistles in the boto has important implications for the evolution of whistles in Cetacea and their association with sociality.  相似文献   

14.
Geographic variations in the whistles of Hawai'ian spinner dolphins are discussed by comparing 27 spinner dolphin pods recorded in waters off the Islands of Kaua'i, O'ahu, Lana'i, and Hawai'i. Three different behavioral states, the number of dolphins observed in each pod, and ten parameters extracted from each whistle contour were considered by using clustering and discriminant function analyses. The results suggest that spinner dolphin pods in the Main Hawai'ian Islands share characteristics in approximately 48% of their whistles. Spinner dolphin pods had similar whistle parameters regardless of the island, location, and date when they were sampled and the dolphins' behavioral state and pod size. The term "whistle-specific subgroup" (WSS) was used to designate whistle groups with similar whistles parameters (which could have been produced in part by the same dolphins). The emission rate of whistles was higher when spinner dolphins were socializing than when they were traveling or resting, suggesting that whistles are mainly used during close-range interactions. Spinner dolphins also seem to vary whistle duration according to their general behavioral state. Whistle duration and the number of turns and steps of a whistle may be more important in delivering information at the individual level than whistle frequency parameters.  相似文献   

15.
The characteristics of the whistles of Hawaiian spinner dolphins (Stenella longirostris) are considered by examining concurrently the whistle repertoire (whistle types) and the frequency of occurrence of each whistle type (whistle usage). Whistles were recorded off six islands in the Hawaiian Archipelago. In this study Hawaiian spinner dolphins emitted frequency modulated whistles that often sweep up in frequency (47% of the whistles were upsweeps). The frequency span of the fundamental component was mainly between 2 and 22 kHz (about 94% of the whistles) with an average mid-frequency of 12.9 kHz. The duration of spinner whistles was relatively short, mainly within a span of 0.05 to 1.28 s (about 94% of the whistles) with an average value of 0.49 s. The average maximum frequency of 15.9 kHz obtained by this study is consistent with the body length versus maximum frequency relationship obtained by Wang et al. (1995a) when using spinner dolphin adult body length measurements. When comparing the average values of whistle parameters obtained by this and other studies in the Island of Hawaii, statistically significant differences were found between studies. The reasons for these differences are not obvious. Some possibilities include differences in the upper frequency limit of the recording systems, different spinner groups being recorded, and observer differences in viewing spectrograms. Standardization in recording and analysis procedure is clearly needed.  相似文献   

16.
A signal-processing algorithm was developed to analyze harmonic frequency-modulated sounds, to modify the parameters of the analyzed signal, and to synthesize a new analytically specified signal that resembles the original signal in specified features. This algorithm was used with dolphin whistles, a frequency-modulated harmonic signal that has typically been described in terms of its contour, or pattern of modulation of the fundamental frequency. In order to test whether other features may also be salient to dolphins, the whistle analysis calculates the energies at the harmonics as well as the fundamental frequency of the whistle. The modification part of the algorithm can set all of these energies to a constant, can shift the whistle frequency, and can expand or compress the time base or the frequency of the whistle. The synthesis part of the algorithm then synthesizes a waveform based upon the energies and frequencies of the fundamental and first two harmonics. These synthetic whistles will be useful for evaluating what acoustic features dolphins use in discriminating different whistles.  相似文献   

17.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

18.
Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号