首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李学超  王安民  王兆亮  杨阳 《中国物理 B》2012,21(8):87303-087303
The second-harmonic generation(SHG) coefficient in an asymmetric quantum dot(QD) with a static magnetic field is theoretically investigated.Within the framework of the effective-mass approximation,we obtain the confined wave functions and energies of electrons in the QD.We also obtain the SHG coefficient by the compact-density-matrix approach and the iterative method.The numerical results for the typical GaAs/AlGaAs QD show that the SHG coefficient depends strongly on the magnitude of magnetic field,parameters of the asymmetric potential and the radius of the QD.The resonant peak shifts with the magnetic field or the radius of the QD changing.  相似文献   

2.
The optical rectification (OR) coefficient in a parabolic quantum dots (QDs) subject to applied electric and magnetic fields is theoretically investigated in the framework of the compact-density-matrix approach and an iterative method. The confined wave functions and energies of electrons in the QDs are calculated in the effective-mass approximation. Numerical results are presented for typical GaAs/AlGaAs parabolic QDs. These results show that the OR coefficient strongly depends on the radius of QDs and the magnitude of electric and magnetic fields. And the peak shifts to the aspect of high energy when considering the influence of electric and magnetic fields.  相似文献   

3.
The second-harmonic generation (SHG) coefficient for parabolic quantum dots (QDs) subject to applied electric and magnetic fields is theoretically investigated, within the framework of the compact-density-matrix approach and an iterative method. Numerical results are presented for typical GaAs/AlGaAs parabolic QDs. These results show that the radius of QD and the magnitude of electric and magnetic fields have a great influence on the SHG coefficient. And the peak shifts to the aspect of high energy when considering the influence of electric and magnetic fields. Moreover, the SHG coefficient also depends sensitively on the relaxation rate of the spherical QD system.  相似文献   

4.
We study the spectral properties of electron quantum dots (QDs) confined in 2D parabolic harmonic oscillator influenced by external uniform electrical and magnetic fields together with an Aharonov–Bohm (AB) flux field. We use the Nikiforov–Uvarov method in our calculations. Exact solutions for the energy levels and normalized wave functions are obtained for this exactly soluble quantum system. Based on the computed one-particle energetic spectrum and wave functions, the interband optical absorption GaAs spherical shape parabolic QDs is studied theoretically and the total optical absorption coefficient is calculated.  相似文献   

5.
The influence of an external electric field on the binding energies of the ground state and excited states with the third-harmonic-generation (THG) coefficient for spherical quantum dot (QD) with parabolic confinement is investigated theoretically. The energy levels and wave functions of electronic states in the QDs are calculated using by variational method within the effective-mass approximation. The numerical results demonstrate that the THG coefficient very sensitively depends on the magnitude of the electric field and the radius of the QDs. In addition, the THG coefficient also depends on the relaxation rate of the spherical QD with parabolic confinement and the position of impurity.  相似文献   

6.
Yi-Ming Duan 《中国物理 B》2023,32(1):17303-017303
We investigate the nonlinear optical rectification (NOR) of spherical quantum dots (QDs) under Hulthén plus Hellmann confining potential with the external tuning elements. Energy and wavefunction are determined by using the Nikiforov-Uvarov method. Expression for the NOR coefficient is derived by the density matrix theory. The results show that the applied external elements and internal parameters of this system have a strong influence on intraband nonlinear optical properties. It is hopeful that this tuning of the nonlinear optical properties of GaAs/Ga1-xAlxAs QDs can make a greater contribution to preparation of new functional optical devices.  相似文献   

7.
Phonon-assisted exciton transitions are investigated for self-organized InAs/GaAs quantum dots (QDs) using selectively excited photoluminescence (PL) and PL excitation spectroscopy. The results unambiguously demonstrate intrinsic recombination in the coherent InAs/GaAs QDs and the absence of a Stokes shift between ground state absorption and emission. Phonon-sidebands corresponding to a phonon energy of 34 meV are resolved and Huang–Rhys parameters of 0.015 and 0.08 are found for phonon-assisted emission and absorption, respectively, which are about one order of magnitude larger than in bulk InAs. Calculations of the exciton–LO–phonon interaction based on an adiabatic approximation and realistic wave functions for ideal pyramidal InAs/GaAs QDs show this enhanced polar coupling to result from the particular confinement and the strain-induced piezoelectric potential in such strained low-symmetry QDs.  相似文献   

8.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

9.
Two-electron states of a three-dimensional spherical GaAs quantum dot (QD) with a Gaussian confining potential confinement are studied. Calculations are made by using the method of few-body physics within the effectivemass approximation. We have calculated the energy levels of single and triplet states as functions of the range and depth of the confining potential well in the spherical QDs. The same calculations performed with the parabolic approximation of the Gaussian potential lead to the results, which are qualitatively and quantitatively different.  相似文献   

10.
Binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with spherical confinement, parabolic confinement and rectangular confinement are calculated as a function of dot radius in the influence of electric field. The binding energy is calculated following a variational procedure within the effective mass approximation along with the spatial depended dielectric function. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. It is found that the contribution of spatially dependent screening effects are small for a donor impurity and it is concluded that the rectangulax confinement is better than the parabolic and spherical confinements. These results are compared with the existing literature.  相似文献   

11.
An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolieity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolieity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities.  相似文献   

12.
Using the Nikiforov–Uvarov (NU) method, the energy levels and the wave functions of an electron confined in a two-dimensional (2D) pseudoharmonic quantum dot are calculated under the influence of temperature and an external magnetic field inside dot and Aharonov–Bohm (AB) field inside a pseudodot. The exact solutions for energy eigenvalues and wave functions are computed as functions of the chemical potential parameters, applied magnetic field strength, AB flux field, magnetic quantum number and temperature. Analytical expression for the light interband absorption coefficient and absorption threshold frequency are found as functions of applied magnetic field and geometrical size of quantum pseudodot. The temperature dependence energy levels for GaAs semiconductor are also calculated.  相似文献   

13.
There is a growing interest in optically controlled millimeter wave oscillators. In this paper, we have investigated the external-circuit impedances of an optically controlled millimeter wave subharmonic Gunn diode oscillator, which is illuminated by GaAs/GaAlAs laser beam. The variation of the external-circuit impedances looking outward from the Gunn diode with respect to the optical injection plasma density are calculated based on a field analysis method. The results give some useful conclusions for optically controlled millimeter wave Gunn diode oscillator design. Experimentally an optical tuning frequency shift of 7MHz is achieved at W-band.  相似文献   

14.
InGaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs from the GaAs is reduced due to the tensile strain induced by the InGaAsSb SRL, because the lattice constant of InGaAsSb is closer to InAs lattice constant than that of GaAs, resulting in a significant red shift of photoluminescence peaks of the InAs QDs. The emission wavelength from InAs QDs can be controlled by changing the Sb composition of the InGaAsSb SRL. The 1.5 μm band emissions were achieved in the sample with an InGaAsSb SRL whose Sb compositions were above 0.3. The calculation of the electron and the hole wave functions using the transfer matrix method indicates that the electron and the hole were localized around InAs QDs and InGaAsSb SRL.  相似文献   

15.
一维位势透射系数的计算与谐振隧穿现象的研究   总被引:3,自引:0,他引:3  
使用具有不同有效质量的一维多阶梯势透射系数的递推计算公式,可以方便地计算任意形状的一维分区位势的透射系数。给出了几种位势的透射系数随入射粒子能量变化的曲线,研究了谐振隧穿现象。对半导体材料GaAlAs/GaAs/GaAlAs的谐振隧穿现象进行了较详细的讨论。计算结果表明,对于两对称方势垒夹一个任意形状势阱的位势,也可能存在谐振隧穿现象。  相似文献   

16.
Binding energies of a charged exciton as a function of well width of a GaAs/GaAlAs corrugated quantum well are investigated. The calculations have been performed by the variational method based on a two parametric trial wave function within a single band effective mass approximation. We have also included the effect of nonparabolicity of the conduction band of GaAs. We study the spectral dependence of the charged exciton in a GaAs/GaAlAs corrugated quantum well as a function of well width. The photoionization cross section for the charged exciton placed at the center of the quantum well is computed as a function of normalized photon energy. The cross-section behavior as a function of incident energy is entirely different in the two cases of radiation being x-direction (along the growth direction) or z-direction. The interband emission energy as a function of well width is calculated and the dependence of the photoionization cross section on photon energy is carried out for the charged excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The results show that the charged exciton binding energy, interband emission energy and the photoionization cross section depend strongly on the well width. Our results are compared with the other existing literature available.  相似文献   

17.
The optical rectification (OR) coefficient for cubical quantum dots (CQDs), with an applied electric field is theoretically investigated in the framework of the compact-density-matrix approach and an iterative method. The confined wave functions and energies of electrons in the CQDs are calculated in the effective-mass approximation. Numerical calculations are presented for typical GaAs/AlAs CQDs. The results show that the calculation for OR coefficient in the CQDs system can reach a magnitude of , two orders higher than that in the spherical quantum dots system. The OR coefficient strongly depends on the length of CQDs and the magnitude of electric field. And the peak shifts to the aspect of high energy when considering the electric field.  相似文献   

18.
Third-harmonic generation (THG) for cubical quantum dots (CQDs) with an applied electric field is theoretically investigated in the framework of the compact-density-matrix approach and an iterative method. The confined wave functions and energies of electrons in the CQDs are calculated in the effective-mass approximation. Numerical calculations are presented for typical GaAs/AlAs CQDs. The results demonstrate that the THG strongly depends on the length of the CQDs and the magnitude of the electric field. Also, the peaks shift towards the higher energy region with increasing electric field.  相似文献   

19.
The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10−5 m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.  相似文献   

20.
Two low lying energy levels of 3D two-electron quantum dot with rigid confinement (the wave functions vanish at the surface of the quantum dot) are obtained by the variational and perturbation methods. There are two kind of quantum dots: para- and ortho-dots with antiparallel and parallel electron spins, respectively. An ensemble of the two-electron quantum dots contains para-dots in the ground state and ortho-dots in the lowest metastable state at low enough temperatures. The optical parameters of GaAs two-electron quantum dot are calculated with the help of obtained energy levels and compared with the optical parameters known for the one electron GaAs quantum dot. The Coulomb interaction between electrons is responsible for the blue shift of maxima of the absorption coefficient and refractive index of two-electron quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号