首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second-harmonic generation (SHG) coefficient for parabolic quantum dots (QDs) subject to applied electric and magnetic fields is theoretically investigated, within the framework of the compact-density-matrix approach and an iterative method. Numerical results are presented for typical GaAs/AlGaAs parabolic QDs. These results show that the radius of QD and the magnitude of electric and magnetic fields have a great influence on the SHG coefficient. And the peak shifts to the aspect of high energy when considering the influence of electric and magnetic fields. Moreover, the SHG coefficient also depends sensitively on the relaxation rate of the spherical QD system.  相似文献   

2.
We theoretically investigate the refractive index (RI) changes in an asymmetric quantum dot (QD) underlying an external static magnetic field. We obtain the confined wave functions and energies of an electron in QD by the effective-mass approximation. Using the compact-density-matrix approach and iterative method, we obtain the analytical expressions of linear, nonlinear and total RI changes. The results of numerical calculations for the typical GaAs/AlGaAs QD show that the RI changes are sensitive to the parameters of the asymmetric potential and incident optical intensity. Moreover, the resonance peaks of the RI changes shift with the value of magnetic field B or the radius of the QD changing.  相似文献   

3.
The second harmonic generation (SHG) in the asymmetric double triangular quantum wells (DTQWs) is investigated theoretically. The dependence of the SHG coefficient on the right-well width of the DTQWs is studied, and the influence of the applied electric field on SHG coefficient is also taken into account. The analytical expression of the SHG coefficient is analyzed by using the compact density-matrix approach and the iterative method. Finally, the numerical calculations are presented for the typical GaAs/AlxGa1−xAs asymmetric DTQWs. The results show that the calculated SHG coefficient in this coupled system can reach the magnitude of 10−5 m/V, 1–2 orders of magnitude higher than that in step quantum well, and that in double square quantum wells. Moreover, the SHG coefficient is not a monotonic function of the right-well width, but has complex relationship with it. The calculated results also reveal that an applied electric field has a great influence on the SHG coefficient. Applying an appropriate electric field to a DTQW with a wider right well can induce a sharper peak of the SHG coefficient due to the double-resonant enhancement.  相似文献   

4.
The sum-frequency generation (SFG) is theoretically studied in a quantum dot (QD) through the framework of the effective-mass approximation and compact density matrix approach. QD is spherical with the parabolic potential confinement, under applied electric field and in the presence of Rashba spin-orbit interaction (SOI). Using the computed energies and eigenkets, the second-order susceptibility of SFG has been also calculated as a function of radius of QD, spin–orbit interaction strength and the applied electric field. The effects of Rashba SOI strength, radius of QD and the applied electric field on the second-order of susceptibility coefficient are considered.  相似文献   

5.
We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with Pöschl-Teller confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behavior (spin singlet-triplet transitions) as a function of the strength of a magnetic field is found. We find that the dot radius R of a Pöschl-Teller potential is important for the ground-state transition and the feature of ground-state for a Pöschl-Teller QD and a parabolic QD is similar when R is larger. The larger the well depth, the higher the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in a Pöschl-Teller QD.  相似文献   

6.
Suvajit Pal  Manas Ghosh 《哲学杂志》2019,99(19):2457-2486
In this paper, we explore the linear, third-order nonlinear, and total optical absorption coefficient (OAC) and refractive index change coefficient (RICC) of a GaAs doped quantum dot/quantum ring (QD/QR) with parabolic-inverse squared potential in conjunction with modified Gaussian confinement and taking into account the presence of on-centre shallow donor and or acceptor impurity. Calculations are done via the compact density matrix formalism and the iterative method. The two-dimensional parabolic QD/QR is subjected to uniform magnetic field oriented perpendicularly to the plane of the structure. The energy levels and wave function are derived within the framework of effective-mass and parabolic band approximation. The results exhibit that the OACs and RICC are clearly affected by different parameters of the applied confinement, strength of magnetic field, and the presence of impurity. The variation of confinement potential, nature of impurity, dot radius, cyclotron frequency of the parabolic confinement potential, and geometric parameter of the on-centre repulsive potential lead to either a red-shift or a blue-shift of the resonant peaks of the OACs and of the maximum and minimum of the RICC together with significant variations of the magnitudes of these resonant structures.  相似文献   

7.
The influence of an external electric field on the binding energies of the ground state and excited states with the third-harmonic-generation (THG) coefficient for spherical quantum dot (QD) with parabolic confinement is investigated theoretically. The energy levels and wave functions of electronic states in the QDs are calculated using by variational method within the effective-mass approximation. The numerical results demonstrate that the THG coefficient very sensitively depends on the magnitude of the electric field and the radius of the QDs. In addition, the THG coefficient also depends on the relaxation rate of the spherical QD with parabolic confinement and the position of impurity.  相似文献   

8.
Multiexcitons confined in InGaAs/GaAs quantum dots (QDs) with a lateral size slightly exceeding the exciton Bohr radius are investigated by magnetophotoluminescence spectroscopy at 2 K. The Coulomb correlations in the two-exciton complex result in an additional confinement, which increases with decreasing dot size, while a magnetic field reduces this effect. A three-exciton complex is confined only by the geometric confinement potential of the QD. The exciton-exciton repulsion increases with decreasing dot size, while a magnetic field decreases the repulsion strongly when the magnetic length becomes smaller than the lateral size of the QD. A shell model for the QD multiexciton states is proposed. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 263–268 (25 August 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

9.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

10.
We present a theoretical study of optical second-harmonic generation(SHG) of symmetric semiconductor quantum dots (QDs) excited by the near field of the tip in a near-field scanning optical microscope. We show that the usual optical transition selection rules for the SH nonlinear interaction between the tip field and the QD are broken when the tip is scanned over the QD, because the tip field varies rapidly over the QD domain. It is also demonstrated that the tip-position dependence of the SH signal essentially maps the spatial distribution of the tip field.  相似文献   

11.
On the fundamental basis of the modified Lee Low Pines theoretical method, we study analytically the stability and coherence of magneto-bipolaron in asymmetric quantum dot (QD) under the laser field. It is observed that, the bipolaron stability strongly depends on the electron–phonon coupling constant, magnetic field, laser frequency and high laser field strength. It is shown that, the laser field can trap and cool the magneto-bipolaron under certain conditions. The laser and magnetic field strongly affect the coherence time of bipolaron. This study enables to construct superconducting materials.  相似文献   

12.
The third-harmonic generation (THG) coefficient for cylindrical quantum dots in a static magnetic field is investigated theoretically. By using the compact density-matrix approach and the iterative method, we obtain an analytical expression for the THG coefficient, and numerical calculations for typical GaAs/AlAs cylindrical quantum dots are presented. The results show that the THG coefficient can reach a magnitude of 10−10 m2/V 2. In addition to the radius R of the cylindrical quantum dots, both the parabolic confining potential and the static magnetic field have an influence on the THG coefficient.  相似文献   

13.
In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the finite element method(FEM) for different values of magnetic field. We have also studied effect of magnetic field on second harmonic generation(SHG) and third-harmonic generation(THG) in the lens-shaped quantum dot. In this regard, we have obtained an analytic expression for the SHG and THG by a compact density matrix approach and an iterative procedure. According to the obtained results, it is found that the presence of the magnetic field affects the symmetry of the system. The SHG and THG are decreased with increasing the magnetic field. The magnetic field has a great influence on the energy levels, wave functions, the SHG and THG in a lens shaped quantum dot.  相似文献   

14.
We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.  相似文献   

15.
In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the finite element method (FEM) for different values of magnetic field. We have also studied effect of magnetic field on second harmonic generation (SHG) and third-harmonic generation (THG) in the lens-shaped quantum dot. In this regard, we have obtained an analytic expression for the SHG and THG by a compact density matrix approach and an iterative procedure. According to the obtained results, it is found that the presence of the magnetic field affects the symmetry of the system. The SHG and THG are decreased with increasing the magnetic field. The magnetic field has a great influence on the energy levels, wave functions, the SHG and THG in a lens shaped quantum dot.  相似文献   

16.
We investigate mesoscopic transport through a system that consists of a central quantum dot (QD) and two single-wall carbon nanotube (SWCN) leads in the presence of a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunnelling current is sensitively related to the spin-flip effect. We present the calculations of charge and spin current components to show the intimate relations to the SWCN leads. Zeeman effect is important when the applied magnetic field is strong enough. The current characteristics are quite different when the source-drain bias is zero (eV=0) and nonzero (eV≠0). The asymmetric peak and valley of spin current versus gate voltage exhibit Fano resonance. Multi-resonant peaks of spin current versus photon energy ħω reflect the structure of CN quantum wires, as well as the resonant photon absorption and emission effect. The matching-mismatching of channels in the CN leads and QD results in novel spin current structure by tuning the frequency.  相似文献   

17.
The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10−5 m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.  相似文献   

18.
Microscopic calculation of the probability of Auger recombination of charge carriers localized in a semiconducting quantum dot (QD) is carried out. It is shown that two mechanism of Auger recombination (nonthreshold and quasi-threshold) operate in the QD. The nonthreshold Auger recombination mechanism is associated with scattering of a quasimomentum from a heterobarrier, while the quasi-threshold mechanism is connected with spatial confinement of the wave functions of charge carriers to the QD region; scattering of carriers occurs at the short-range Coulomb potential. Both mechanisms lead to a substantial enhancement of Auger recombination at the QD as compared to a homogeneous semiconductor. A detailed analysis of the dependence of Auger recombination coefficient on the temperature and QD parameters is carried out. It is shown that the nonthreshold Auger recombination process dominates at low temperatures, while the quasi-threshold mechanism prevails at high temperatures. The dependence of the Auger recombination coefficient on the QD radius experiences noticeable changes as compared to quantum wells and quantum filaments.  相似文献   

19.
Basically different mechanisms of optical second harmonic generation (SHG) in semiconductors, induced by an external magnetic field H, have been identified experimentally by studying the diluted magnetic semiconductor (Cd,Mn)Te. For paramagnetic (Cd,Mn)Te the SHG response is governed by spin quantization of electronic states, in contrast with diamagnetic CdTe with its dominating orbital quantization. The mechanisms can be identified by the distinct magnetic field dependence of the SHG intensity which scales with the spin splitting in the paramagnetic case as compared to the H2 dependence observed for the diamagnetic case.  相似文献   

20.
The linear and nonlinear optical properties in a three-dimensional anisotropic quantum dot subjected to a uniform magnetic field directed with respect to the z-axis have been investigated within the compact-density matrix formalism and the iterative method. The dependence of the linear and nonlinear optical properties on the characteristic frequency of the parabolic potential, on the magnetic field, and on the incident optical intensity is studied in detail. Moreover, taking into account the position-dependent effective mass, the dependence of the linear and nonlinear optical properties on the dot radius is investigated. The results show that the optical absorption coefficients (ACs) and refractive index (RI) changes of the anisotropic quantum dot (QD) are strongly affected by these factors, and the position effect also plays an important role in the optical ACs and RI changes of the anisotropic QD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号