首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here in this paper, we demonstrate a facile technique for creating the mixed formamidinium(HN = CHNH_3~+, FA~+)and methylammonium(CH_3NH_3~+, MA~+) cations in the lead iodide perovskite. This technique entails a facile drop-casting of formamidinium iodide(FAI) solutions on as-prepared MAPbI_3 perovskite thin films under the controlled conditions,which leads to controllable displacement of the MA~+ cations by FA~+ cations in the perovskite structure at room temperature. Uniform and controllable mixed organic cation perovskite thin films without a "bi-layered" or graded structure are achieved. By applying this approach to photovoltaic devices, we are able to improve the performances of devices through extending their optical-absorption onset further into the infrared region to enhance solar-light harvesting. Additionally,this work provides a simple and efficient technique to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials for high-performance perovskite solar cells.  相似文献   

2.
钙钛矿薄膜形貌的控制是一个提高太阳能电池能量转换效率的关键问题,而引入添加剂是解决这一问题的一种有效而简便的方法。利用聚丙烯腈(PNA)作为CH3NH3PbI3前驱体溶液溶剂添加剂,通过其浓度可以调控钙钛矿薄膜结晶和表面的覆盖率。本文通过SEM、XRD以及UV-Vis研究了PNA掺杂CH3NH3PbI3钙钛矿薄膜后的表面形貌、结晶度和光学性能的变化。结果表明,通过添加少量的PNA可以优化钙钛矿薄膜的性能,其强烈影响薄膜的结晶过程,有助于形成均匀连续的薄膜,减少针孔,从而增强了钙钛矿层的覆盖率和光吸收。当PNA 的含量为1%(质量分数)时,钙钛矿太阳能电池的各项性能最佳,能量转换效率达到了8.38%。与未加PNA 的电池效率(1.31%) 相比,提高了540%。这些结果表明,PNA可以有效调控钙钛矿薄膜的晶体生长和薄膜形貌,在钙钛矿太阳能电池的大规模生产过程中是一种可以改善钙钛矿薄膜质量的有效添加剂。  相似文献   

3.
Xin Zhang 《中国物理 B》2022,31(4):46401-046401
The degradation mechanism of the all-inorganic perovskite solar cells in the ambient environment remains unclear. In this paper, water and oxygen molecule adsorptions on the all-inorganic perovskite (CsPbBr3) surface are studied by density-functional theory calculations. In terms of the adsorption energy, the water molecules are more susceptible than the oxygen molecules to be adsorbed on the CsPbBr3 surface. The water molecules can be adsorbed on both the CsBr- and PbBr-terminated surfaces, but the oxygen molecules tend to be selectively adsorbed on the CsBr-terminated surface instead of the PbBr-terminated one due to the significant adsorption energy difference. While the adsorbed water molecules only contribute deep states, the oxygen molecules introduce interfacial states inside the bandgap of the perovskite, which would significantly impact the chemical and transport properties of the perovskite. Therefore, special attention should be paid to reduce the oxygen concentration in the environment during the device fabrication process so as to improve the stability and performance of the CsPbBr3-based devices.  相似文献   

4.
全无机钙钛矿CsPbX3纳米晶具有发光波长可调、半高峰窄、器件制备简单、稳定性高等优点,被广泛应用于太阳能电池、发光二极管、激光器、光电探测器等领域。本文概述了该材料的国内外研究进展,首先介绍了CsPbX3纳米晶的分子结构、尺寸效应、发光特性和光催化特性,然后对其合成方法、稳定性及器件应用进行了重点阐述,最后对其存在的问题及未来的发展进行了总结和展望。  相似文献   

5.
钙钛矿层的品质极大影响钙钛矿太阳能电池性能. 然而,在溶液法生成多晶钙钛矿膜过程中会不可避免地形成缺陷和陷阱位. 通过在钙钛矿层中嵌入添加物改善钙钛矿晶化,用于减少和钝化缺陷是非常重要的. 本文合成一种环境友好的二维纳米材料质子化石墨相氮化碳(p-g-C3N4),并掺杂于碳基钙太阳能电池的钙钛矿层中. 实验证明,在钙钛矿前驱体溶液中添加p-g-C3N4不仅能调解碘铅甲胺(MAPbI3)结晶的成核和生长速率,获得大晶粒尺寸的平滑表面,还能减少钙钛矿层的本征缺陷. 质子化过程在氮化碳表面引入活性基团-NH2/-NH3,它们和钙钛矿晶体表面N-H键发生强化学作用,有效地钝化电子陷阱,提高钙钛矿结晶质量. 结果表明,与不掺杂的对照电池(效率为4.48%)和掺杂石墨相氮化碳(g-C3N4)电池(效率为5.93%)相比,掺杂质子化石墨相氮化碳(p-g-C3N4)的电池获得了6.61%的较高效率. 本工作展示了一种通过掺杂改性添加物改善钙钛矿膜的简单方法,为碳基钙钛矿太阳能电池的低成本制备提供了建议.  相似文献   

6.
Zi-Jun Wang 《中国物理 B》2022,31(8):87802-087802
In order to fabricate high-performance inverted perovskite solar cells (PeSCs), an appropriate hole transport layer (HTL) is essential since it will affect the hole extraction at perovskite/HTL interface and determine the crystallization quality of the subsequent perovskite films. Herein, a facile and simple method is developed by adding ethanolamine (ETA) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as HTL. The doping of a low-concentration ETA can efficiently modify the electrical properties of the PEDOT:PSS film and lower the highest occupied molecular orbital (HOMO) level, which is more suitable for the hole extraction from the perovskite to HTL. Besides, ETA-doped PEDOT:PSS will create a perovskite film with larger grain size and higher crystallinity. Hence, the results show that the open-circuit voltage of the device increases from 0.99 V to 1.06 V, and the corresponding power conversion efficiency (PCE) increases from 14.68% to 19.16%. The alkaline nature of ethanolamine greatly neutralizes the acidity of PEDOT:PSS, and plays a role in protecting the anode, leading the stability of the devices to be improved significantly. After being stored for 2000 h, the PCE of ETA-doped PEDOT:PSS devices can maintain 84.2% of the initial value, which is much higher than 67.1% of undoped devices.  相似文献   

7.
Kun Qian 《中国物理 B》2021,30(6):68103-068103
Morphology control of perovskite films is of critical importance for high-performance photovoltaic devices. Although solvent vapor annealing (SVA) treatment has been widely used to improve the film quality efficiently, the detailed mechanism of film growth is still under construction, and there is still no consensus on the selection of solvents and volume for further optimization. Here, a series of solvents (DMF, DMSO, mixed DMF/DMSO) were opted for exploring their impact on fundamental structural and physical properties of perovskite films and the performance of corresponding devices. Mixed solvent SVA treatment resulted in unique benefits that integrated the advantages of each solvent, generating a champion device efficiency of 19.76% with improved humidity and thermal stability. The crystallization mechanism was constructed by conducting grazing-incidence wide-angle x-ray diffraction (GIWAXS) characterizations, showing that dissolution and recrystallization dominated the film formation. A proper choice of solvent and its volume balancing the two processes thus afforded the desired perovskite film. This study reveals the underlying process of film formation, paving the way to producing energy-harvesting materials in a controlled manner towards energy-efficient and stable perovskite-based devices.  相似文献   

8.
Employing additive to regulate the morphology of perovskite film is an effective method to enhance both the power conversion efficiency and long term stability of organic-inorganic hybrid perovskite solar cells. Here, we demonstrate that guanidinium thiocyanate (GuSCN) is a suitable additive for methylammonium lead iodide (MAPbI3) perovskite materials. Addition of GuSCN into MAPbI3 can simultaneously enhance the crystallinity, enlarge the crystal size, and reduce the trap density of the perovskite films. As a result, the MAPbI3 perovskite with 10% GuSCN exhibits superior power conversion efficiency of 16.70% compared to the pristine MAPbI3 perovskite solar cell (15.57%). At the same time, the MAPbI3 perovskite solar cell with GuSCN additive shows better stability, power conversion efficiency retains ~90% of its initial value compared to only ~60% for pristine MAPbI3 perovskite solar cells after being stored for 15 days without encapsulation.  相似文献   

9.
CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) are competitive materials for a wide range of applications because of their outstanding optoelectronic properties. Ion doping has been demonstrated as one powerful method for improving the optical properties of CsPbX3 NCs. However, the conventional ion-doping approaches are tedious, and generally performed under an inert atmosphere and high temperature. In this work, a one-step ultrasonic-assisted approach is demonstrated to prepare doped CsPbX3 NCs. To demonstrate the universality of the ultrasonic-assisted ion-doping approach, three ion-doped perovskite NCs are prepared, which represent three common improvements effects of ion doping on perovskite NCs, namely improved stability, PL emission, and photoluminescence quantum yields (PLQYs) of perovskite NCs. Sr-doped CsPbI3 NCs showed improved phase stability. Mn-doped CsPbCl3 NCs showed dual-color emissions at 406 and 580 nm. The PLQYs of the as-prepared Ni-doped CsPbCl3 NCs are greatly improved, from 10.1% to 71%. Such a simple and versatile ion-doping approach may promote the practical applications of all-inorganic perovskite NCs.  相似文献   

10.
Yu Zhan 《中国物理 B》2021,30(8):88803-088803
Formamidinium lead triiodide (FAPbI3) is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability. However, quite a few researches focused on the stability of the FAPbI3 perovskite precursor solutions. Besides, the most efficient FAPbI3 layers are prepared by the spin-coating method, which is limited to the size of the device. Herein, the stability of FAPbI3 perovskite solution with methylammonium chloride (MACl) or cesium chloride (CsCl) additive is studied for preparing perovskite film through an upscalable blade-coating method. Each additive works well for achieving a high-quality FAPbI3 film, resulting in efficient carbon electrode perovskite solar cells (pero-SCs) in the ambient condition. However, the perovskite solution with MACl additive shows poor aging stability that no α-FAPbI3 phase is observed when the solution is aged over one week. While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pure α-FAPbI3 perovskite film even the solution is aged over one month. During the solution aging process, the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducing δ-phase FAPbI3. Whereas, replacing MACl with CsCl could effectively solve this issue. Our founding shows that there is a great need to develop a non-MACl FAPbI3 perovskite precursor solution for cost-effective preparation of pero-SCs.  相似文献   

11.
异质结工程是一种提高半导体材料光电性能的有效方法.本文构建了全无机钙钛矿CsPbX3(X=Cl,Br,I)和二维五环石墨烯penta-graphene(PG)的新型范德瓦耳斯(vdW)异质结,利用第一性原理研究了CsPbX3-PG异质结不同界面接触的稳定性,进而计算了稳定性较好的Pb-X接触界面异质结的电子结构和光电性能.研究结果表明,CsPbX3-PG(X=Cl,Br,I)异质结具有II型能带排列特征,能级差距由Cl向I逐渐缩小,具有良好的光生载流子分离能力和电荷输运性质.此外,研究发现CsPbX3-PG异质结能有效拓宽材料的光吸收谱范围,并能显著提高其光吸收能力,尤其是CsPbI3具有最优的光吸收性能.经理论估算,CsPbX3-PG的光电功率转换效率(PCE)可高达21%.这些结果表明,全无机金属卤化物钙钛矿CsPbX3-PG异质结可以有效地提高半导体材料的光电性能,预期在光电转换器件中具有重要的应用潜力.  相似文献   

12.
Morphology and surface property of ZnO thin films as electron transporting layer in perovskite solar cells are crucial for obtaining high-efficient and stable perovskite solar cells. In this work, two different preparation methods of ZnO thin films were carried out and the photovoltaic performances of the subsequent perovskite solar cells were investigated. ZnO thin film prepared by sol–gel method was homogenous but provided high series resistance in solar cells, leading to low short circuit current density. Lower series resistance of solar cell was obtained from homogeneous ZnO thin film from spin-coating of colloidal ZnO nanoparticles (synthesized by hydrolysis–condensation) in a mixture of 1-butanol, chloroform and methanol. The perovskite solar cells using this film achieved the highest power conversion efficiency (PCE) of 4.79% when poly(3-hexylthiophene) was used as a hole transporting layer. In addition, the stability of perovskite solar cells was also examined by measuring the photovoltaic characteristic for six consecutive weeks with the interval of 2 weeks. It was found that using double layers of the sol–gel ZnO and ZnO nanoparticles provided better stability with no degradation of PCE in 10 weeks. Therefore, this work provides a simple method for preparing homogeneous ZnO thin films in order to achieve stable perovskite solar cells, also for controlling their surface properties which help better understand the characteristics of perovskite solar cells.  相似文献   

13.
自从2009年首次报道采用有机-无机杂化钙钛矿作为吸光材料用于太阳能电池以来, 钙钛矿太阳能电池效率的快速提升引起了人们广泛的关注, 这类电池同时具有制备工艺简单、成本低廉等优点, 引发了钙钛矿电池的研究热潮. 目前研究工作大多数集中在如何提高电池的光电转化效率, 但钙钛矿电池要真正实现产业化应用, 急需要解决材料及器件的稳定性问题. 本文探讨影响钙钛矿材料及器件的稳定性因素, 从温度及湿度等方面分析了材料的稳定性, 从传输材料及其界面问题讨论了器件的稳定性.  相似文献   

14.
Yue Wang 《中国物理 B》2021,30(6):67802-067802
The two-dimensional (2D) Ruddlesden-Popper-type perovskites, possessing tunable bandgap, narrow light emission, strong quantum confinement effect, as well as a simple preparation method, are identified as a new generation of candidate materials for efficient light-emitting diodes. However, the preparation of high-quality quasi-2D perovskite films is still a challenge currently, such as the severe mixing of phases and a high density of defects within the films, impeding the further promotion of device performance. Here, we prepared the quasi-2D PEA2MAn-1PbnBr3n+1 perovskite films by a modified spin-coating method, and the phases with large bandgap were effectively suppressed by the vacuum evaporation treatment. We systematically investigated the optical properties and stability of the optimized films, and the photoluminescence (PL) quantum yield of the treated films was enhanced from 23% to 45%. We also studied the emission mechanisms by temperature-dependent PL spectra. Moreover, the stability of films against moisture, ultraviolet light, and heat was also greatly improved.  相似文献   

15.
钙钛矿薄膜的气相制备是一种极具潜力的工业化生产工艺,但薄膜的质量控制目前远落后于溶液制备法.本文通过建立PbI_2薄膜向钙钛矿薄膜完全转化过程中反应时间、晶粒尺寸与温度的关系,实现了薄膜的质量优化及大面积钙钛矿薄膜的制备,将薄膜的平均晶粒粒径从0.42μm优化到0.81μm.基于空间电荷限制电流模型对缺陷密度的研究显示,钙钛矿薄膜的缺陷密度由5.90×10~(16)cm~(–3)降低到2.66×10~(16)cm~(–3).光伏器件(FTO/TiO_2/C_(60)/MAPbI_3/spiro-OMeTAD/Au结构)测试显示,面积为0.045cm~2器件的平均光电转换效率从14.00%提升到17.42%,最佳光电转换效率达到17.80%,迟滞因子减小至4.04%.同时,基于180℃制备的1cm~2器件的光电转换效率达到13.17%.  相似文献   

16.
近年来,全无机铯铅卤素钙钛矿(CsPb X 3,X=Cl,Br,I)量子点由于其色纯度高、具有可调谐的发射波长(410~760 nm)、窄的半峰宽(12~42 nm)和较高的荧光量子产率(最高可达95%以上)以及可全溶液处理等优势而受到人们的高度关注,在显示和照明领域有着较为广阔的应用前景。本文首先介绍了近年来发展起来的全无机钙钛矿量子点的液相合成方法,如高温热注射法、一步反应法、阴离子交换法和过饱和重结晶法等;其次介绍了全无机钙钛矿量子点的形貌、尺寸和晶型调控及材料组分、反应温度和杂质离子对其发光性能的影响,进而总结了无铅全无机钙钛矿量子点的研究进展;然后介绍了全无机钙钛矿量子点在发光二极管方面的应用进展;最后概述了全无机钙钛矿量子点在未来发展中存在的挑战和机遇。  相似文献   

17.
目前,钙钛矿太阳能电池的光电转换效率已超过25%,飞速提升的效率使得人们越来越期待商业化的应用,但钙钛矿材料的稳定性问题却是其商业化所面临的最大挑战,准二维钙钛矿有望解决这一问题。利用大的有机间隔阳离子的疏水性和热稳定性,以及更高的晶体形成能和更加稳固的结构,准二维钙钛矿能够有效提高钙钛矿的稳定性。此外,准二维钙钛矿对钙钛矿薄膜的形态也具有明显的改善作用,可代替反溶剂工程,简化工艺,满足钙钛矿的工业化生产要求。然而,由于绝缘的有机间隔阳离子导致的相对大的带隙和低的载流子迁移率,阻碍了载流子传输,准二维钙钛矿太阳能电池的效率仍然与三维钙钛矿相差较大。因此,对于准二维钙钛矿,必须对其特性和器件应用等进行深入研究,以进一步优化器件性能。本文总结了准二维钙钛矿太阳能电池的研究进展,归纳了准二维钙钛矿的分子结构、准二维结构提升三维钙钛矿稳定性的方法和原理、准二维钙钛矿的相分布及其载流子传输特性,分析了准二维钙钛矿太阳能电池目前面临的问题并对其前景进行了展望,期望为制备高效稳定的准二维钙钛矿太阳能电池提供参考。  相似文献   

18.
钙钛矿太阳电池综述   总被引:5,自引:0,他引:5       下载免费PDF全文
姚鑫  丁艳丽  张晓丹  赵颖 《物理学报》2015,64(3):38805-038805
基于有机-无机杂化钙钛矿材料(CH3NH3PbX3)制备的太阳电池效率自2009年从3.8%增长到19.6%, 因其较高的光吸收系数, 较低的成本及易于制备等优势获得了广泛关注. 钙钛矿材料不仅可以作为光吸收层, 还可用作电子和空穴传输层, 以此制备出不同结构的钙钛矿太阳电池: 介孔结构、介观超结构、平面结构、无HTM层结构和有机结构. 除此之外, 钙钛矿材料制备方法的多样性使其更具吸引力, 目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液-气相沉积法. 本文主要介绍了钙钛矿太阳电池的发展历程、工作原理及钙钛矿薄膜的制备方法等. 详细阐述了电池每一层的具体作用和针对现有的钙钛矿结构各层材料的优化, 最后介绍了钙钛矿太阳电池所面临的问题和发展前景, 以期对钙钛矿太阳电池有进一步的了解, 为制备新型高效的钙钛矿太阳电池打下坚实的基础.  相似文献   

19.
作为近些年来最耀眼的明星材料之一,钙钛矿以其优异独特的光电特性成功吸引研究人员的广泛关注.自2009年报道了第一篇光电转换效率为3.8%的钙钛矿电池,到现在短短10年期间效率已经突破25.2%,几乎可以与商用多晶硅电池媲美.尽管其制备过程简单,但在薄膜的形成过程中很容易引入大量的缺陷.缺陷的存在会加速载流子的复合,阻碍载流子传输通道,不利于制备高效率的钙钛矿太阳能电池;同时也会影响钙钛矿电池工作的长期稳定性,加速材料的降解,阻碍了钙钛矿太阳能电池进一步商业化发展.因此,理解缺陷的存在机制并有效地抑制缺陷产生,对制备高性能长寿命器件至关重要.而界面修饰作为一种有效的钝化缺陷方法之一,已经被广泛使用.本文讨论了不同结构电池器件的缺陷产生位置及对器件性能的影响.分别从载流子传输层钝化策略和钙钛矿界面修饰策略入手,分析了常用的传输层/钙钛矿界面钝化缺陷的机制,指出了钝化策略发展的巨大优势,并对合适的钝化材料进行分类,希望能够对高重复性、高光电转换效率、长期工作稳定的钙钛矿太阳能电池发展提供有益的指导.  相似文献   

20.
Spin coated perovskite thin films are known to have an issue of pinholes & poor morphology control which lead to poor device-to-device repeatability, that is an impediment to scale-up. In this work, Methylamine vapor annealing process is demonstrated which consistently leads to high-quality perovskite thin-films with an average grain-size of 10–15 μm. The improvement in film morphology enables improvement in effective carrier recombination lifetime, from 21 μs in as-deposited films to 54 μs in vapor-annealed films. The annealed films with large-grains are also more stable in ambient conditions. Devices made on annealed perovskite films are very consistent, with a standard deviation of only 0.7%. Methylamine vapor annealing process is a promising method of depositing large-grain CH3NH3PbI3 films with high recombination lifetime and the devices with improved performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号