首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of charges in organic photo-active film has been the focus of tremendous research in the past few decades with the view to understand the physics of the polymers. Bulk heterojunction type devices are particularly more interesting because of their high power conversion efficiency. We have fabricated organic PV cell based on sandwich type ITO/PEDOT:PSS/APFO green-6:PCBM/LiF/Al device structure. The space charge limited currents were investigated to be able to derive important transport parameters of the devices. The measured current agrees very well with trap free space charge limited transport theory. The zero field mobility and field activation factor found from the data were μ 0=(3.39±0.2)×10−6 m2/V sec and γ=(8.3±0.3)×10−4 (m/V)1/2, respectively.  相似文献   

2.
Nonlinearity in current (I) – voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I–V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I–V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.  相似文献   

3.
《Current Applied Physics》2014,14(5):680-684
White organic light-emitting devices (WOLEDs) with fluorescent donor-acceptor-substituted spirobifluorene compounds (red 2-diphenylamino-7-(2,2-dicyanovinyl)-9,9′-spirobifluorene and blue 2-diphenylamino-7-(2,2-diphenylvinyl)-9,9′-spirobifluorene) have been fabricated. The optimized WOLEDs shows a maximum current efficiency 5.9 cd/A and very low efficiency roll-off. From the brightness at maximum current efficiency to high brightness of 10000 cd/m2, the current efficiency roll-off is only 0.4%. It can be attributed to the ambipolar blue fluorescent emitter with voltage-independnet mobility which makes the device having a broader charge recombination zone and balance of carrier transport.  相似文献   

4.
《Current Applied Physics》2015,15(3):279-284
A non-volatile flash memory device based on metal oxide semiconductor (MOS) capacitor structure has been fabricated using platinum nano-crystals(Pt–NCs) as storage units embedded in HfAlOx high-k tunneling layers. Its memory characteristics and tunneling mechanism are characterized by capacitance–voltage(C–V) and flat-band voltage-time(ΔVFB-T) measurements. A 6.5 V flat-band voltage (memory window) corresponding to the stored charge density of 2.29 × 1013 cm−2 and about 88% stored electron reserved after apply ±8 V program or erase voltage for 105 s at high frequency of 1 MHz was demonstrated. Investigation of leakage current–voltage(J–V) indicated that defects-enhanced Pool-Frenkel tunneling plays an important role in the tunneling mechanism for the storage charges. Hence, the Pt–NCs and HfAlOx based MOS structure has a promising application in non-volatile flash memory devices.  相似文献   

5.
《Current Applied Physics》2018,18(3):324-328
We report the fabrication of single-walled carbon nanotube (SWCNT) network transistors by ferroelectric Pb(Zr0.4Ti0.6)O3 (PZT) bottom-gating and investigate the polarization effects of PZT on the transport properties of the transistor device. Our devices exhibit typical p-channel transistor characteristics and a large hysteresis loop with high ON/OFF current ratio and large ON current as well as memory window (MW) measured up to 5.2 V. The origin of clockwise hysteresis is attributed to ferroelectric polarization modulated charge trapping/de-trapping process in the interface states between SWCNT networks and PZT. The retention time about 104s with two high stable current states preliminarily demonstrates great potential for future non-volatile memory applications based on such SWCNT/PZT hybrid systems.  相似文献   

6.
In this paper, we are reporting the fabrication of a solution-processed SnO2-based flexible ReRAM using laser-induced graphene (LIG) transferred onto polydimethylsiloxane (PDMS). The fabricated ReRAM showed forming-free and self-compliance bipolar resistive switching characteristics when the applied voltage was swept from 0 V to 4.5 V for SET and from 0 V to - 4.5 V for RESET. The device operates as a filamentary type ReRAM and its conduction mechanism analysis indicates that the space charge limited conduction (SCLC) is dominant mechanism in the analog resistive switching of the fabricated device. For the reliability analysis, 100 cycles of endurance test and 1.8 × 103 s of retention test were performed. The flexibility of the fabricated ReRAM device was demonstrated by showing that the resistive switching characteristics were still obtained after bending 200 times repeatedly down to 1 mm radius. Our study suggests the new fabrication process of a solution-processed flexible ReRAM and proves its potential applications to flexible electronics.  相似文献   

7.
One of the porphyrin derivatives, meso-tetraphenylporphyrin (TPP), has been synthesized and examined as an emitter material (EM) for efficient fluorescent red organic light-emitting diodes (OLEDs). By inserting a tungsten oxide (WO3) layer into the interface of anode (ITO) and hole transport layer N,N′-Di-[(1-napthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) and by using fullerene (C60) in contact with a LiF/Al cathode, the performance of devices was markedly improved. The current density–voltage–luminance (JVL) characterizations of the samples show that red OLEDs with both WO3 and C60 as buffer layers have a lower driving voltage and higher luminance compared with the devices without buffer layers. The red OLED with the configuration ITO/WO3 (3 nm)/NPB (50 nm)/TPP (60 nm)/BPhen (30 nm)/C60 (5 nm)/LiF (0.8 nm)/Al (100 nm) achieved the high luminance of 6359 cd/m2 at the low driving voltage of 8 V. At a current density of 20 mA/cm2, a pure red emission with CIE coordinates of (0.65; 0.35) is observed for this device. Moreover, a power efficiency of 2.07 lm/W and a current efficiency of 5.17 cd/A at 20 mA/cm2 were obtained for the fabricated devices. The study of the energy level diagram of the devices revealed that the improvement in performance of the devices with buffer layers could be attributed to lowering of carrier-injecting barrier and more balanced charge injection and transport properties.  相似文献   

8.
A ZnMgO and ZnO double-layered structure was prepared to create a stepwise interfacial electronic structure to improve the electron-injection and electron-transport behaviors in quantum-dot light-emitting diodes (QLEDs). The current density of the electron-only device (EOD) with ZnMgO/ZnO was higher than that of the EOD with only ZnMgO. The detailed QLED interfacial electronic structure was measured using X-ray and ultraviolet photoelectron spectroscopy. A stepwise interfacial electronic structure for electron injection and electron transport was observed connecting the aluminum cathode to the ZnMgO conduction band minimum (CBM) via the ZnO CBM. The QLEDs with the ZnMgO/ZnO double electron transport layer showed an improved performance, with a maximum luminance and current efficiency of 90,892 cd m−2 and 19.2 cd A−1, respectively. Moreover, the turn-on voltage of the device was significantly reduced to 2.6 V due to the stepwise interfacial electronic structure between the aluminum cathode and ZnMgO CBM. This research provides a useful method for developing highly efficient and low turn-on voltage QLEDs using a ZnMgO/ZnO double ETL for next-generation display.  相似文献   

9.
A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the drain current as well as small-signal parameters such as drain conductance and device transconductance. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, nonlinear polarization effects, self-heating, voltage drops in the ungated regions of the device are also taken into account. Also, to develop the model, the accurate two-dimensional electron gas mobility and the electron drift velocity have been used. The calculated model results are in very good agreement with existing experimental data for AlmGa1−mN/GaN HEMT devices with Al mole fraction within the range from 0.15 to 0.50, especially in the linear regime of IV curve.  相似文献   

10.
The elastic scattering Green function method has been developed to describe the I–V characteristics of molecular wires. The molecular electronic structure and the interaction between the molecule and the gold surface are two key factors for the charge transport properties of molecular wires in the formulas. Anab initio calculation at the hybrid density functional theory level is carried out to obtain the electronic structure of 4-4′-dimercaptodibenzene molecule. The frontier orbit theory and the perturbation theory are employed to determine the constant of the interaction energy between molecule and surface quantitatively. The numerical results show that the bonding between the sulfur atom and the gold atoms corresponds mainly to the covalent bond. Some molecular orbits are extended over molecule and gold cluster that certainly give channels for the charge transport, other molecular orbits are localized and the charge transport can take place by tunnel mechanism. At zero bias region, there exists a current gap. With the increasing bias, the conductance of the wire takes a shape of plateaus.  相似文献   

11.
Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.  相似文献   

12.
We measure electrical transport on networks of single wall nanotube of different origin as a function of temperature T, voltage V and pressure P. We observe Luttinger liquid (LL) behavior, a conductance ∝Tα and a dynamic conductance ∝Vα. We observe a sample dependent P variation of the α parameters, interpreted as Fermi level changes due to pressure induced charge transfer. We show how, through standard four-leads and crossed configuration methods, it is possible to determine αbulk and αend, respectively. We study and discuss the pressure and doping level dependences of the number of channels N, the LL parameter g and the intra-rope tube-tube coupling constant U within a phenomenological model.  相似文献   

13.
A report on GaN based metal insulator semiconductor (MIS) ultraviolet (UV) photodetectors (PDs) with atomic layer deposited (ALD) 5-nm-thick HfO2 insulating layer is presented. Very low dark current of 2.24 × 10−11 A and increased photo to dark current contrast ratio was achieved at 10 V. It was found that the dark current was drastically reduced by seven orders of magnitude at 10 V compared to samples without HfO2 insulating layer. The observed decrease in dark current is attributed to the large barrier height which is due to introduction of HfO2 insulating layer and the calculated barrier height was obtained as 0.95 eV. The peak responsivity of HfO2 inserted device was 0.44 mA/W at bias voltage of 15 V.  相似文献   

14.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

15.
This paper proposes an analytical solution for DC negative corona discharge in a wire-cylinder device based on experimental results in which both the corona and drift regions are considered; this approach aims to provide a theoretical method for analyzing electrostatic precipitation at high temperatures. The inter-electrode space is divided into three zones, namely, the ionization layer, the attachment layer (corona region) and the drift region, to investigate the space charge concentration and the electric field distribution. The boundary of the ionization layer is assumed to be the radius at which the rate of ionization balances that of electron attachment. The radius where the value of E/N equals 110 Td is recommended as the boundary of the attachment layer. It was determined that an increasing temperature leads to a decrease in the largest space charge number density and the largest electric field in the drift region that can be provided by a discharging device. With respect to the device in the present work, when the temperature increases from 350 °C to 850 °C, the largest electric field decreases from ∼9 × 106 V/m to ∼3 × 106 V/m, and the largest charge number density decreases from ∼1.3 × 1015 m−3 to 6.4 × 1014 m−3. The radius of the corona region, the space charge number density and the electric field increase as the applied voltage increases at a given temperature. For example, at a temperature of 550 °C, when the applied voltage increases from 10,500 V to 18,879 V, the radius of the corona region increases from ∼2.9 mm to ∼4.9 mm. It appears to be unreasonable to use a constant value that is calculated from Peek's formula as the electric field at the surface of the cathode under all of the conditions.  相似文献   

16.
Thin-film sodium-ion-conducting polymer electrolyte based on polyethylene oxide (PEO) system was prepared by solvent casting method. The thin-film electrolytes were characterized by X-ray diffraction (XRD), infrared (IR), cyclic voltammetry (CV) and alternating current conductivity, and Wagner’s polarization method. The complexation of salt with PEO was confirmed by XRD and IR studies. The charge transport of these electrolytes is mainly due to ions, which was confirmed by the transference number experiment. The conductivity studies show that the conductivity value of PEO/NaClO3 complex increases with the increase of temperature as well as the addition of low molecular weight polyethylene glycol, dimethyl formamide, and propylene carbonate. The electrolyte stability and cell reversibility were analyzed by CV studies. Electrochemical cells have been fabricated with a common cell configuration Na|electrolyte|(MnO2 + I2 + C + electrolyte), and their discharge characteristic studies were made through a load 100 kΩ at room temperature. The measured open circuit voltage ranges from 2.80 to 2.54 V with short circuit current ranges from 667 to 1,000 μA and several other cell parameters were evaluated. Finally, the merit of the composite cathode is found with the comparison of the MnO2 cathode.  相似文献   

17.
ZnO/p- SiC heterojunctions were fabricated by thermal evaporation from ZnO high quality powder (99.99%) onto 4H and 6H p-SiC polytypes. We find that, despite the low cost technique employed for the deposition of the ZnO film, the devices exhibited breakdown voltages in excess of 100 V, high rectification ratio (forward to reverse current ratio, IF/IR) and low leakage current, respectively, 2×105 and 4.5×10−7 A/cm2 (for the 4H p-SiC based device) and 5×104 and 5×10−7 A/cm2 (for the 6H p-SiC based device). The current-voltage (I×V) characteristics were also measured at the nanometer scale by means of conductive atomic force microscopy. A simple Schottky diode model and conductance divided by current versus conductance plots (G/I×G plots) was used to analyze device characteristics. This analysis shows that, when probing at the nanometric scale, fluctuations of the effective barrier height and/or surface states across individual grains or grain boundaries cause deviations from linear G/I×G plots. These fluctuations are smeared out when probing at the macroscale and thus it becomes possible to obtain linear plots and extract diode parameters.  相似文献   

18.
We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.  相似文献   

19.
An efficient red-light-emitting device using a new host material (DPF) and a red dopant (DCJTB) with a configuration of ITO/NPB (50 nm)/DCJTB:DPF (2%, 10 nm)/TPBI (30 nm)/LiF (0.5 nm)/Mg:Ag has been fabricated and investigated. The red OLED yields a brightness of 9270 cd/m2 at 10 V, a maximum current efficiency of 4.2 cd/A and a maximum power efficiency of 3.9 lm/W. Using DPF as host material, the performance is much better than that of a prototypical Alq3-based device, which has a maximum efficiency of 1.9 cd/A and 0.6 lm/W. The performance is even comparable with red OLEDs using an assist dopant or a cohost emitter system. Results of this work indicate that DPF is a promising host material for red OLEDs with high efficiency and simple device structure.  相似文献   

20.
IV characteristics of ZnO nanoribbons (NRs) have been investigated using density functional theory coupled to non-equilibrium Green’s Function. The current through the NRs drops with the increasing NR width, leveling off to 1.66 and 0.42 µA in zig-zag and arm-chair NRs respectively for widths ~20 Å at 3 V of electrical bias. The transconductance as well as the current flowing through the arm-chair NRs decays exponentially with NR width for both odd and even number of dimer lines traversed. The current through the zig-zag NRs falls off exponentially with NR width, being insensitive to the odd or even numbers of zig-zag lines appearing along the normal to the charge transport direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号