首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于波长调制技术的激光器调制特性研究   总被引:1,自引:0,他引:1  
在流场诊断技术中,可调谐半导体吸收光谱技术(TDLAS)成为主要的诊断技术之一,其可实现非接触、原位检测。波长调制(WMS)和直接吸收(DA)是两种最常用的TDLAS气体传感方法,在目标含量很低或者极端流场环境下,波长调制技术呈现出更多的优势,检测灵敏度与直接吸收相比可以提高1~2个数量级。在近红外波长调制技术应用领域,分布反馈式(DFB)半导体激光器成为流场诊断技术的光源选择之一,无论利用谐波信号(或者归一化谐波信号)的线型拟合,还是选择谐波信号的峰值来反演流场参数,吸收模型的准确建立均十分重要。在模型建立时,激光器频率-时间响应以及光强-时间响应的准确表示尤为重要。为解决吸收模型准确建立问题,提出了一种准确测量激光器调制参数的完整方法,通过实验测量了用于探测水汽吸收的1 392和1 469 nm激光器的调制特性,研究了分布反馈式激光器的调制参数随调制幅度,调制频率以及工作温度的变化。根据该方法得到的调制参数,建立吸收模型,测得常温下空气中水汽浓度为1.97%,直接吸收方法测得浓度为1.99%,验证了该测量方法的准确性。研究表明,调制深度随调制幅度的增加线性增加,随调制频率的增加非线性单调减小,随工作温度的升高线性增加;激光器的出光强度和频率同时被调制,强度变化超前频率变化的相位,随调制幅度的变化不明显,随调制频率的增加单调增加,随工作温度的升高单调减小;归一化一次谐波振幅和二次振幅均随调制幅度的增加而增加,随调制频率的增加而减小,随工作温度的变化不明显。在吸收光谱应用领域,波长调制技术发挥的作用愈加重要,调制系数与谐波信号的峰值息息相关,在波长调制技术应用时,选取适当的调制参数,有利于得到合适的谐波信号,可通过改变调制幅度、调制频率、工作温度得到最优调制系数。研究了近红外分布反馈式半导体激光器的调制特性,该方法同样适用于不同封装和不同波段激光器调制特性的研究,利于推广吸收光谱技术在各领域的应用。  相似文献   

2.
 介绍了可调谐二极管激光吸收光谱(TDLAS)波长调制技术的测温原理。通过选择水在1 397.75 nm和1 397.87 nm处两条邻近的吸收线,运用多功能数据采集卡对二极管激光器进行控制和信号采集,实现了TDLAS波长调制技术对标定燃烧炉甲烷/空气预混火焰温度的实时在线测量,测量重复频率为250 Hz。分析了温度测量数据抖动的原因,结果表明燃烧过程中火焰本身温度的抖动是测量结果波动的主要原因,测量系统的A类标准不确定度小于53 K。  相似文献   

3.
可调谐二极管激光吸收光谱技术一般采用双线法同时测量气体的温度和物质的量分数。然而在频分和时分复用这两种方式下,双线法易存在频率串扰和降低时间分辨率等问题,在实际应用中有一定的局限性。针对此问题,提出了基于波长调制光谱技术的免标定单线测量法,只用一条吸收谱线即可实现对气体温度和物质的量分数的同时测量。以燃烧过程中的主要产物CO_2为目标气体,选择中心频率为5007.787cm-1的吸收谱线R(50)进行实验验证。从扣除背景的峰值归一化二次谐波信号的线型中提取温度信息,再利用扣除背景的一次谐波归一化二次谐波信号提取CO_2的物质的量分数。实验结果表明,免标定单线法与热电偶测量的温度最大相对偏差小于2.5%,物质的量分数的最大相对偏差小于2.8%。验证了用免标定单线测量法同时测量CO_2的温度和物质的量分数是可行的。  相似文献   

4.
可调谐二极管激光吸收光谱技术(TDLAS)以其响应速度快、灵敏度高、非接触等优点已被广泛应用于气体浓度、温度的原位在线测量。基于波长调制吸收光谱技术,理论分析和推导了二次谐波温度反演公式。并采用分时锯齿波扫描形式使两个激光器分别产生覆盖中心波长为760.21 nm和760.88 nm的两条氧气吸收谱线的激光,经2×1光纤耦合器耦合为一束光束,通过测量管式炉内同一区域的二次谐波信号来反演有氧环境中的平均温度值。为了修正谱线线型和光强对实验所得的二次谐波信号峰值比值的影响,采用室温下标定温度反演公式中所需参数的方法,有效地简化了实验过程,提高了测量精度。温度在300 K~900 K范围内变化的测量结果与管式炉的平均温度值具有较高的一致性,误差在±20 K以内。  相似文献   

5.
可调谐半导体激光吸收光谱技术(TDLAS)利用激光器的窄线宽和波长调谐特性,使其扫描被测气体的单个吸收峰,实现痕量气体的高分辨率、高灵敏度快速检测。通过分析近红外波段的乙烯吸收谱线特性,选取1 626.8 nm附近的吸收峰作为检测谱线,研制了基于white池结构的TDLAS检测系统,结合波长调制和二次谐波检测,对体积分数为20~1 200 ppmv的乙烯气体进行了测量,推算该系统的检测下限约为10 ppmv。  相似文献   

6.
采用可调谐半导体激光吸收光谱(TDLAS)技术对痕量气体的连续检测,二次谐波背景信号会随着半导体激光器管壳温度变化产生漂移,使得二次谐波波形无法保持稳定,对测量结果产生误差。基于TDLAS原理,解释了二次谐波背景信号的产生,分析了背景信号的来源和背景漂移对测量结果的影响,通过对背景信号的扣除获得标准的二次谐波波形,设计并搭建了一套高精度恒温控制系统,此系统搭载了风冷以及水冷模块进行辅助控温,控制精度达到±0.1 ℃,选取了1 796和1 653 nm波长的DFB半导体激光器,通过控制两只激光器在20~44 ℃温度条件下来回变动,温度间隔为2 ℃,对获得的二次谐波背景信号进行了实验研究。研究表明:随着半导体激光器管壳温度上升,背景信号发生红移,反之发生蓝移;实验中温度每变化2 ℃, 1 796和1 653 nm的DFB激光器的背景信号分别产生了约3.2和2.67 pm波长漂移;通过对半导体激光器进行控温封装,实现对半导体激光器管壳的恒温控制,可以有效地消除室温变化引起的背景信号漂移,维持测量系统的稳定性,提高痕量气体检测的精度和准确度。  相似文献   

7.
在可调谐激光吸收光谱(TDLAS)技术中,携带气体浓度信息的二次谐波信号易受激光扫描信号与调制信号的幅值、频率等参数影响。基于TDLAS技术搭建了CO浓度检测硬件系统,与对应仿真模型进行比较分析,研究了调制参数对二次谐波信号峰值、信噪比、对称性以及峰宽的影响,总结出具体变化规律。实验确定了系统最优调制参量,在硬件不变的情况下提高了检测精度。对CO在1567.7nm的吸收光谱进行了检测,发现测量浓度随着温度的升高而降低,最大相对误差已超过15%。为了减少温度变化对测量的影响,分别采用RBF及BP神经网络、PSO优化BP神经网络和WOA优化BP神经网络算法对系统进行补偿。结果表明,WOA优化BP神经网络方法的补偿效果最好,修正后浓度相对误差降至1%以下,有效提高了系统在变温环境下的准确性和稳定性。研究为系统的调制参数设置以及精准检测提供参考,为后续实验提供了有价值的指导。  相似文献   

8.
针对旋流火焰的复杂流场结构,结合可调谐二极管吸收光谱技术(tunable diode laser absorption spectroscopy,TDLAS)和多光谱层析成像术(hyperspectral tomography,HT),发展了具有空间分辨能力的二维吸收光谱测量技术(tunable diode laser absorption tomography,TDLAT),实现了甲烷/空气旋流火焰不同高度的二维温度场测量.该TDLAT系统吸收波长为7 185.6,7 444.3,6 807.8和7 466.3 cm-1四线,采用分时-直接吸收探测策略,测量频率2.5 kHz,采用13×13路正交光路(空间分辨率7 mm),采用模拟退火算法进行数据重建.经与理论计算结果对比分析,重建结果真实地反映了旋流火焰温度场的二维分布.   相似文献   

9.
张书锋  蓝丽娟  丁艳军  贾军伟  彭志敏 《物理学报》2015,64(5):53301-053301
气体吸收谱线的线宽主要包括碰撞作用引起的洛伦兹线宽和分子热运动引起的高斯线宽, 是可调谐二极管激光吸收光谱技术(TDLAS)的重要参数. 本项研究在弱吸收条件下, 通过对波长调制法中二次与四次谐波峰值比进行理论分析和仿真计算, 发现无论洛伦兹和高斯线宽如何变化, 二次和四次谐波峰值比具有恒过不动点的特征. 本文基于该不动点提出了一种线宽在线测量的方法, 并以CO2分子6982.0678 cm-1 吸收谱线为例进行实验验证. 实验结果表明, 该方法可以精确测量线宽, 进而根据测量得到的线宽确定气体分压和总压, 可有效地提高TDLAS技术在工业现场中的测量精度.  相似文献   

10.
可调谐半导体激光吸收光谱(TDLAS)是一种具有高灵敏度、高分辨率和快速响应等特点的气体测量技术,已广泛用于大气痕量气体的测量以及工业有毒有害废气诊断和天然气泄漏检测。分布反馈式(DFB)激光器具有窄线宽和可调谐特性,并且能够精确让输出波长扫描单根气体吸收线,使得TDLAS技术能实现高灵敏气体浓度检测。介绍了在线式波长调制二次谐波(WMS-SH)气体检测技术,讨论了基于最小二乘法气体浓度反演算法,通过修正式加权滑动平均滤波对浓度信号进行了数字滤波处理,系统实现了不大于1 s的系统响应时间,提高了信噪比和系统的检测灵敏度,并在天然气处理厂实时硫化氢检测中得到了应用。  相似文献   

11.
可调谐二极管激光吸收光谱(TDLAS)技术测量CO2浓度时,由于测量氛围温度变化的影响引起气体吸收谱线的线强和线型发生变化,最终导致浓度测量存在较大误差。为了克服温度变化对浓度测量的影响,选用中心波长在1 580 nm的DFB激光器,基于直接吸收法,模拟电厂尾部烟道内的高浓度二氧化碳气体环境,研究了在常温(298 K)和变温(298~338 K、间隔10 K)不同温度工况下CO2浓度的测量。结果显示,常温浓度测量的最大相对误差为-5.26%,最小相对误差为1.25%,相对误差均方值为3.39%,验证了TDLAS测量系统在常温下有着良好的测量精度和稳定性,但其在变温测量时浓度测量结果误差较大,其最大相对误差已经超过25%。为了修正温度变化对浓度测量结果的影响,适应工业测量的需要,在变温测量基础上利用最小二乘法拟合出测量系统在不同温度下的浓度与气体吸收的修正关系式。经过修正后,CO2浓度测量的相对误差降到5%以下,相对误差均方值降到3.5%以下。修正结果表明,所提出的修正方法可以有效抑制温度变化对浓度测量结果的影响,显著提高了测量系统在变温环境下的测量精度和稳定性,为TDLAS系统测量CO2浓度的现场应用提供了理论支持和技术保障。  相似文献   

12.
基于Gabor变换的TDLAS检测信号的降噪研究   总被引:1,自引:0,他引:1  
可调谐二极管激光吸收光谱(TDLAS)技术结合波长调制光谱(WMS)技术是用于痕量气体检测的重要技术手段。通过锁相放大器进行谐波检测,对解调得到的二次谐波信号进行分析可获得气体吸收的信息。但由于二次谐波信号受到噪声的影响,降低了检测系统的精度和稳定性。为了提高TDLAS检测系统的信噪比(SNR),提出了一种基于Gabor变换对二次谐波信号进行数字滤波降噪的方法。以CH4在1 653.72 nm处的吸收光谱为例,通过仿真和实验对该降噪方法的有效性进行了验证。仿真结果表明,通过Gabor变换对信噪比为0dB的二次谐波信号进行处理后,系统的信噪比可提高15.73 dB。实验结果表明,基于Gabor变换进行降噪处理后,CH4浓度在0.001%~0.02%区间内与二次谐波峰值的线性相关系数r达到了0.996 59,且系统的检测精度和稳定性明显提高。  相似文献   

13.
氧气浓度是工业生产过程中重要监测参数,采用可调谐二极管激光吸收光谱法(tunable diode laser absorption spectroscopy,TDLAS),结合波长调制技术,可以实现对现场氧气浓度的高精度在线监测,利用氧气位于760 nm处的特征吸收峰进行了氧气浓度的测量。由于激光具有很强的相干性,所以TDLAS技术的检测灵敏度受到光学干涉噪声的严重制约,特别在低浓度时,光学干涉引起的基线起伏使得提取吸收峰波形信号时出现较大误差,影响了TDLAS分析仪的监测灵敏度。针对这一情况,采用了Levenberg-Marquardt非线性拟合算法,并且利用了吸收谱线线型——洛伦兹线型的导数形式对波长调制后获得的二次谐波波形信号进行拟合,提取波形信息。另一方面Levenberg-Marquardt非线性拟合方法需要有大量的计算,为了使研制的TDLAS分析仪能够实现现场的实时监测,采用了支持浮点运算的DSP的C28系列芯片进行数据处理,实现仪器在现场实时监测的功能。实验结果表明,该算法能够有效提取二次谐波信号的吸收峰特征值、克服背景噪声影响,由算法反演得到的氧气浓度与实际浓度的线性比值为1.01,浓度测量的线性误差为1.18%。  相似文献   

14.
可调谐二极管激光吸收光谱技术(TDLAS)作为近年来发展起来的一种气体检测技术,具有高分辨率、高灵敏度和快速测量等特点。波长调制光谱信号的二次谐波分量常作为检测信号,用于气体浓度信息的反演。利用MATLAB中的可视化建模仿真平台Simulink,模拟了基于TDLAS的波长调制光谱信号,利用锁相放大原理提取二次谐波分量。采用数字锁相,正交双通道结构实现锁相算法。通过比较不同调制系数下二次谐波信号的变化情况,分析了二次谐波信号与调制系数的关系,以便确定最佳参数,用于二次谐波的提取。  相似文献   

15.
张志荣  吴边  夏滑  庞涛  王高旋  孙鹏帅  董凤忠  王煜 《物理学报》2013,62(23):234204-234204
可调谐二极管激光吸收光谱技术测量气体浓度时,由于测量氛围温度变化的影响引起解调的二次谐波信号发生变化,最终导致浓度测量的较大误差. 为了修正温度变化对浓度反演结果的影响,适应工业测量、燃烧诊断的需要,采用通过实验所得温度关系的数值拟合修正方法即经验公式修正和根据HITRAN数据库参数的理论关系即理论公式修正两种方法进行分析与讨论. 实验中采用在50 cm长的高温管式炉中通入高温安全的21%浓度的 氧气为目标测定气体,选定760.77 nm的中心吸收波长,测量了温度变化范围为300–900 K,间隔50 K的情况下所得到的谐波信号,并利用一次谐波比值消元法消除光强波动影响后的结果,得出了不同温度下未修正的原始浓度值和通过修正方法后的修正值. 实验结果表明所述的经验公式和理论公式两种修正方法对温度影响都有一定的抑制作用,可以应用到温度变化引起的气体浓度误差修正监测中,为下一步开展燃烧诊断实时在线监测提供了依据. 关键词: 可调谐二极管激光吸收光谱 (TDLAS) 温度修正 经验公式 理论公式  相似文献   

16.
利用可调谐半导体激光吸收光谱技术(TDLAS)并结合波长调制,在近红外波段1531.7nm处对常温常压下的NH3进行浓度测量.在10 m的长程吸收池内得到了25×10-6的浓度信号,并且在25×10-5-400×10-6浓度范围内二次谐波信号与浓度具有良好的线性关系.讨论了粉尘颗粒对于二次谐波信号的干扰,并提出了利用激光强度线性拟合解决颗粒对气体测量干扰的方法.  相似文献   

17.
可调谐半导体激光光谱技术(TDLAS)是近年来发展十分迅速的光谱检测技术,相较于其他光谱检测技术,它具有高灵敏度、高分辨率、实时监测、便携性好、小型化等优点,在工业环保、医疗检测、气象监测等领域得到了广泛的应用。TDLAS波长调制法中谐波信号易受气压影响,经研究发现气压的影响是调制深度对谐波信号的影响,基于TDLAS技术谐波法的原理,研究了各次谐波与调制深度的关系,通过计算四次谐波与二次谐波中心幅值比,利用调制深度函数推算当前气压环境的调制深度,调整调制频率幅度,使得调制深度接近各次谐波最佳调制深度值,使谐波信号信噪比最佳,提高检测精度。实验通过国瑞智GRZ5031湿度发生器产生固定为1 000 ppm的水汽,调节气阀控制密封箱内不同的气压环境,采用TDLAS水汽检测系统获得了10.2~177.9 kPa气压条件下的二次谐波和四次谐波信号,并进行了仿真与实验分析。仿真结果显示:四次谐波与二次谐波中心幅值比的理论值和仿真值最大相对误差为-1.44%,调制深度的理论值与仿真值最大相对误差为1.78%,说明了仿真下的调制深度函数曲线与理论一致。实验结果显示:根据调制深度函数推算调制深度值,当m=2.226 7时,实测的二次谐波中心频率幅值达到最大值,当m=4.061 0时,实测的四次谐波中心频率幅值达到最大值,与理论结果一致;在30.2 kPa<p<177.9 kPa时,调制深度与气压乘积mp值相对误差较小,最大相对误差不超过±3.2%,说明了此气压条件下的mp值波动不大,通过调制深度函数推算的调制深度值与实际值近似,验证了调制深度函数理论的准确性。  相似文献   

18.
可调谐激光吸收光谱技术(TDLAS)由于其高灵敏度、高选择性等优势广泛用于痕量气体检测领域。然而其测量结果容易受到目标气体压力波动的影响,特别是在大气环境下尤为明显,现有方法多为在现场安装压力传感器,对测量结果进行校正。提出了一种无需压力传感装置的气体浓度修正方法。选取碰撞展宽占主导地位的气体吸收谱线,分别建立谱线展宽与波长调制光谱一次谐波(WMS-1f)信号的峰谷值间距和二次谐波(WMS-2f)过零点间距的解析表达式,通过测量一次谐波峰谷值间距或二次谐波过零点间距直接得到被测气体压强,进而利用波长调制光谱一次谐波归一化的二次谐波(WMS-2f/1f)技术补偿测量环境中压力波动对气体浓度测量结果的影响。实验以浓度为1 980 mg·m~(-3)的CO_2为目标气体,选取其位于4 989.97 cm~(-1)的吸收作为目标谱线,在大气压附近进行不同调制深度的变压力测量实验,通过实验分析了压强变化对二氧化碳吸收谱线谐波信号的影响,利用一次谐波峰谷值间距和二次谐波过零点间距分别反演了气体压强,并与气体压强传感器测得的压强数据进行对比,压强偏差在1%以内,验证了通过谐波间距解析表达式计算压强的正确性及通过测量谐波间距对浓度补偿的可行性。最后利用WMS-2f/1f技术和通过谐波间距测得的压强数据对气体浓度进行压强补偿修正,结果表明通过测量谐波间距修正后的浓度与通过高精度压力表补偿后浓度相比误差小于2%,与通过谐波间距推导得出的压力不确定度(小于2%)一致,验证了该方法的可行性和有效性,进一步提高了TDLAS技术在压强波动较大环境下进行气体浓度检测的测量精度。利用谐波间距对气体浓度补偿的方法无需额外的气体压力传感器,简单易行,特别适合于大气环境中气体成分的高灵敏高精度开放光路遥测,也可用于气体浓度和压强的同时测量。  相似文献   

19.
非标定波长调制吸收光谱气体测量研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李宁  翁春生 《物理学报》2011,60(7):70701-070701
为消除可调谐激光调制吸收光谱气体测量技术对于标定过程的依赖,研究了二次谐波信号的非标定波长调制气体测量方法.通过对测量的二次谐波线型进行分析,给出相同工况下二次谐波模拟信号,并利用测量与模拟二次谐波信号进行线性拟合直接计算气体浓度.实验室内采用非标定波长调制气体测量方法,利用 6336.24 cm-1处特征吸收谱线对10 cm长气体吸收池内的CO2进行了测量.结果表明,非标定波长调制气体测量方法可适应各种不同条件,适合于现场气体在线测量.当调制系数在1.8—3. 关键词: 波长调制 二次谐波 吸收光谱 半导体激光器  相似文献   

20.
使用TDLAS技术进行动态压力测量已经成为压力测量领域的研究热点。波长调制法实验装置较为复杂,需要对多个参数进行设置,选择出最优的预设参数能够取得更好的实验效果,获得更高的测量精度。目前波长调制法的实验参数设置基本凭借个人经验,使用Matlab程序仿真结合波长调制法的TDLAS测量技术,能够对实验中需要进行预设的重要参数进行了分析。通过计算4990cm-1波段和6330cm-1波段附近的多条吸收峰,发现4990.09cm-1波段处的吸收峰更适合作为波长调制法的测量波段。以4990.09cm-1处的吸收峰为研究对象,进行了波长调制法压力测量仿真建模,计算了调制度、调谐频率和调制频率对二次谐波幅值和对称性的影响并深入地分析了影响因素,总结了其变化规律。在综合考虑抗噪性能和测量精度的情况下,选择了调制度为2.5,调谐频率30Hz,调制频率5kHz为最佳实验参数。基于Matlab的仿真模型能够快速计算大量参数点,更加直观地分析出对参数的影响趋势,为实验仪器和预设参数的选择提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号