首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
祁建敏  周林  蒋世伦  彭太平 《中国物理 C》2010,34(12):1860-1865
The magnetic proton recoil(MPR)spectrometer is a novel diagnostic instrument with high perfor-mance for measurements of neutron spectra in inertial confinement fusion(ICF)experiments and high power fusion devices.A compact MPR-type spectrometer dedicated to the research of pulsed deuterium-tritium(DT)neutron spectroscopy of special experimental conditions is currently under design.Analyses of the main parameters and performance of the magnetic analysis system through 3-D particle transport calculations and MonteCarlo simulations and calibration of the system performance as a test using CR-39 solid track detector and α particle from 239pu and 226Ra radioactive sources are presented in this paper.The results indicate that the magnetic analysis system will achieve a detection efficiency level of 10-5-10-4 at an energy resolution of 1.5%-2.1%,and fulfills the design goals of the spectrometer.  相似文献   

2.
Results on the lowest-order hadronic vacuum polarization contribution to the muon magnetic anomaly are presented. They are based on the latest published experimental data used as input to the dispersion integral. Thus recent results on τ→υτππ^0 decays from Belle and on e^+e^- annihilation to π^+π^- from BABAR and KLOE are included. The new data, together with improved isospin-breaking corrections for τ decays, result into a much better consistency among the different results. A discrepancy between the Standard Model prediction and the direct g- 2 measurement is found at the level of 3σ.  相似文献   

3.
The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements. Finally, some basic experimental issues are discussed.  相似文献   

4.
Partial substitution of manganese by cobalt in rare-earth perovskites REMnO3 leads to unusual magnetic phenomena because of the simultaneous presence of Mn3+, Mn4+, Co2+ and Co3+ species. The magnetic nature of the RE cation plays a fundamental role in the magnetic properties. We present herein two specific families: for RE=La the magnetic behavior of the |Co+Mn| network is observed, while for Gd its strong magnetic moment interacts with the transition metals, leading to a spin reversal state. Magnetic interactions are maximized at x=0.50, as if two regimes exist: for x<0.5 Co substitutes Mn in the REMnO3 manganite, and for x>0.5 Mn substitutes Co in the RECoO3 cobaltite.  相似文献   

5.
A. Nyffeler 《中国物理 C》2010,34(6):705-711
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contribution to the g- 2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-No QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints, in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g- 2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result αμ^LbyL;had= (116±40) × 10^-11, with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate αe^LbyL;had= (3.9± 1.3) × 10^-14.  相似文献   

6.
Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the in- terplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.  相似文献   

7.
The Rapid Cycling Synchrotron (RCS) is a key component of the China Spallation Neutron Source (CSNS). For this type of high intensity proton synchrotron, the chromaticity, space charge effects, and magnetic field tracking errors between the quadrupoles and the dipoles can induce beta function distortion and tune shift, and induce resonances. In this paper, the combined effects of chromaticity, magnetic field tracking errors and space charge on beam dynamics at CSNS/RCS are studied systemically. 3-D simulations with different magnetic field tracking errors are performed by using the code ORBIT, and the simulation results are compared with the case without tracking errors.  相似文献   

8.
刘伟伟  罗志全  张洁  高杰  边刚 《中国物理 C》2010,34(8):1090-1093
In this paper, considering the quantum effect of electrons in a super-strong magnetic field, the influence of a super-strong magnetic field on the chemical potential of a non-zero temperature electron is analyzed, the rates of β decay under the super-strong magnetic field are studied, and then we compare them with the case without a magnetic field. Here, the nucleus ^63Co is investigated in detail as an example. The results show that a magnetic field that is less than 1010 T has little effect on the electron chemical potential and β decay rates, but the super-strong magnetic field that is greater than 1010 T depresses the electron chemical potential and improves the β decay rates clearly.  相似文献   

9.
郭玉献  徐彭寿 《中国物理 C》2013,37(12):114-118
A small fluctuation of the photon beam position will affect the intensity and polarization characteristics of synchrotron radiation (SR) when it enters an endstation through the related beamline. In this paper, by changing the electron orbit equilibrium position in the vertical direction, we have measured the corresponding changes in the absorption strength of the SR with a gold mesh in different chopper aperture positions. It is found that for three aperture positions, the absorption intensity of the gold mesh shows a good Gaussian distribution as the photon beam position moves, while the ratio of the SR intensity passing through the upper and lower apertures shows a monotonous variation. This suggests a new method for estimating the circular polarization degree of SR originating from the bending magnet based on our current measurement.  相似文献   

10.
We describe some recent results on isospin breaking corrections which are of relevance for predictions of the leading order hadronic contribution to the muon anomalous magnetic moment aμ^had.LO when using τ lepton data. When these corrections are applied to the new combined data on the π^±π^0 spectral function, the prediction for aμ^had.LO based on τ lepton data gets closer to the one obtained using e^+e^- data.  相似文献   

11.
TiO 2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process,and were annealed at 500 C and 800 C in air for 2 hrs.X-ray diffraction (XRD) measurements indicate that the Mn-TiO 2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 C are of pure anatase and rutile,respectively.The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature,and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized,confirming that Mn has doped into the TiO 2 crystal lattice effectively.The room temperature ferromagnetism,which could be explained within the scope of the bound magnetic polaron (BMP) theory,is detected in the Mn-TiO 2 samples with Mn concentration of 2 at%,and the magnetization of the powders annealed at 500 C is stronger than that of the sample treated at 800 C.The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO 2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.  相似文献   

12.
s The geometrical structures of Cd0.75TM0.25Se (TM = Ti, V, Cr and Mn) are optimized, and then their electric and magnetic properties are investigated by performing first-principles calculations within the generalized gradient approximation for the exchange-correlation function based on density functional theory. Cd0.75TM0.25Se (TM =Ti and V) are found to have high spin-polarization near 100% at the Fermi level. Cd0.75TM0.25Se (TM = Cr and Mn) are half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely +100%. The supercell magnetic moments of Cd0.75Cr0.25Se and Cdo.75Mno.25Se are 4.00 and 5.00 μB, which arise mainly from Cr-ions and Mnions, respectively. The half-metallicity of Cdo.75Cro.25Se is more stable than that of Cd0.75Mn0.25Se. The electronic structures of Cr-ions and Mn-ions are Cr eg2↑t22g↑ and Mn e2 3 ↑t23g↑, respectively.  相似文献   

13.
The electron capture rates of 55Co and 56Ni in the ultra-strong magnetic field at four typical temperature- density points have been calculated using the nuclear shell model and Landan energy levels quantized approximate correction. The results show that the electron capture rates of 55Co and 56Ni are increased greatly in the ultra-strong magnetic field, and even exceed two orders of magnitude in the range from 4.414×10^13G to 2.207×10^27 G. The change rate of electron abundance, ye, of 55Co and 56Ni under the condition of B=4.414×10^15G in the magnetar surrounding has been calculated and discussed, the proportions of ye of 55Co and 56Ni in the total Ye have been reduced by 50 percent in all more than the condition without a magnetic field.  相似文献   

14.
Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q2 nπ+ production better constrain the branching ratios liNK and [3Nn. For the first time, the longitudinal transition amplitude to the S11(1535) was extracted from the nπ+ data. Also, new results on the transition amplitudes for the D13(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q2. I also discuss the status of the search for new excited nucleon states.  相似文献   

15.
Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 10e = 79.5775 A.cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84 × 10^4 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly snperparamagnetic behavior is ~ spin due to comparable size of nanospheres with superparamagnetic critical thameter Dcr spm The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.  相似文献   

16.
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.  相似文献   

17.
Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post anneaiing. The in-plane uniaxiai magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe=79.5775 A·m-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.  相似文献   

18.
Taking into account the quantum size effect and the spin dependence of the electronic band structure, and including the spin dependence of the scattering from bulk impurities and two different sets of surface roughness, we present a theory on the electronic transport in magnetic film, in which the average autocorrelation function (ACF) for surface roughness is described by a Gaussion model. Our result shows that the conductivity is a sensitive function of surface roughness and exchange energy. It is also found that in the thin film limit and in the lower-order approximation of the surface scattering, the total conductivity is given by a sum of conductivities of all the subbands and the two spin channels, for each subband and each spin channel the scattering rates due to the impurities and two surfaces are additive.  相似文献   

19.
Ball milling for long time (such as 10, 20, and 30 h) can transform Fe84.94Si9,68A15.38 alloy powders with irregular shapes into flakes. X-ray diffraction (XRD) and M6ssbauer measurements have proven that the unmilled particles and the flakes obtained by milling for 10 h have the same D03-type superlattice structure. The flakes obtained by milling for 20 h and 30 h have the same disorder a-Fe(Si, A1) structure. There are more than 6 absorption peaks in the transmis- sion MSssbauer spectra (TMSs) for the particles with D03-type superlattice structure, which can be fitted with 5 sextets representing 5 different Fe-site environments. However, only 6 TMS absorption peaks have been found for particles with a disorder a-Fe(Si, A1) structure, which can be fitted with the distributions of M6ssbauer parameters (Bhf, isomer shift). The TMS results show that the flaky particles have a stronger tendency to possess the planar magnetic anisotropy. As the result, the flakes have larger microwave permeability values than particles with irregular shapes. The conversion electron M6ssbauer spectra (CEMSs) also show the significantly different Fe-sites environments between the alloy surface and the inside.  相似文献   

20.
InFeP layers are prepared by ion implantation of InP with 100-keV Fe+ ions to a dose of 5 ×10^16 cm-2 and investigated by optical, magnetic, and ion beam analysis measurements. Photoluminescence measurements show a deep-level peak at 1.035 eV due to Fe in InP and two exciton-related luminescences at 1.426 eV and 1.376 eV in the implanted samples annealed at 400℃. Conversion electron Mossbauer spectroscopy reveals a doublet corresponding to Fe3+ ions in the indium sites. Atomic force microscopy and magnetic force microscopy show that magnetic clusters are formed in the annealing process. The magnetization-field hysteresis loops show ferromagnetic properties persisting up to room temperature with a coercive field of 100 0e (10e = 79.5775 A-m-1), saturation magnetization of 4.35 × 10-5 emu, and remnant magnetization of 4.4× 10 6 emu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号