首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
史顺平  张传瑜  赵晓凤  李侠  闫珉  蒋刚 《中国物理 B》2017,26(8):83103-083103
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed.  相似文献   

2.
A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.  相似文献   

3.
The equilibrium geometries, relative stabilities, and electronic properties of Ca2Sin (n = 1-11) clusters have been systematically investigated by using the density function theory at the 6-311G (d) level The optimized geometries indicate that the most stable isomers have three-dimensional structures for n = 3-11. The electronic properties of Ca2 Sin (n = 1-11) dusters axe obtained through the analysis of the natural charge population, natural electron configuration, vertical ionization potential, and vertical electron affinity. The results show that the charges in corresponding Ca2Sin clusters transfer from the Ca atoms to the Sin host. Based on the obtained lowest-energy geometries, the size dependence of cluster properties, such as averaged binding energies, fragmentation energies, second-order energy differences, HOMO- LUMO gaps and chemical hardness, are deeply discussed.  相似文献   

4.
The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copper-doped gold clusters,Au n Cu (n=1-7),are investigated using the density functional theory.Several low-lying isomers are determined.The results indicate that the ground-state Au n Cu clusters have planar structures for n=1-7.The stability trend of the Au n Cu clusters (n=1-7),shows that odd-numbered Au n Cu clusters are more stable than the neighbouring even-numbered ones,thereby indicating the Au 5 Cu clusters are magic cluster with high chemical stability.  相似文献   

5.
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average binding energy per atom, first difference energy and second difference energy of copper cluster. Most of the copper clusters of the size n=70-150 adopt an icosahedral structure. The results show that the trends are in agreement with theoretic prediction for copper clusters. The most stable structures for copper clusters are found at n=77, 90, 95, 131, 139.  相似文献   

6.
吕瑾  张江燕  梁瑞瑞  武海顺 《中国物理 B》2016,25(6):63103-063103
The configurations,stabilities,electronic,and magnetic properties of Fe_nAu(n = 1–12) clusters are investigated systematically by using the relativistic all-electron density functional theory with the generalized gradient approximation.The substitutional effects of Au in Fe_(n+1)(n = 1,2,4,5,10–12) clusters are found in optimized structures which keep the similar frameworks with the most stable Fe_(n+1)clusters.And the growth way for Fe_nAu(n = 6–9) clusters is that the Au atom occupies a peripheral position of Fen cluster.The peaks appear respectively at n = 6 and 9 for Fen Au clusters and at n = 5 and 10 for Fe_(n+1)clusters based on the size dependence of second-order difference of energy,implying that these clusters possess relatively high stabilities.The analysis of atomic net charge Q indicates that the charge always transfers from Fe to Au atom which causes the Au atom to be nearly non-magnetic,and the doped Au atom has little effect on the average magnetic moment of Fe atoms in Fen Au cluster.Finally,the total magnetic moment is reduced by 3 μB for each of Fen Au clusters except n = 3,11,and 12 compared with for corresponding pure Fe_(n+1) clusters.  相似文献   

7.
Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1≤m, n4) are investigated using density functional theory. The lowest energy geometries prefer the planar arrangement of the constituent atoms with a trend to maximize the number of ionic In-O bonds. Due to the charge transfer from In to O atoms, the electrostatic repulsion occurs between the atoms with the same kind of charge. The minimization of electrostatic repulsion and the maximization of In-O bond number compete between each other and determine the location of the isometric total energy. The most stable linear In-O-In-O structure of In2O2 cluster is attributed to the reduced electrostatic repulsive energy at the expense of In-O bond number, while the lowest energy rhombus-like structure of In2O3 cluster reflects the maximized number of In-O bonds. Furthermore, the vibrational frequencies of the lowest energy clusters are calculated and compared with the available experimental results. The energy gap and the charge density distribution for clusters with varying oxygen/indium ratio are also discussed.  相似文献   

8.
雷雪玲 《中国物理 B》2010,19(10):107103-107103
This paper studies the small molybdenum clusters of Mon (n=2--8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n=7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo--N--N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N--N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.  相似文献   

9.
The first-principles method based on density-functional theory is used to investigate the geometries of the lowest-lying isomers of Aun Ag2 (n = 1 ~ 4) clusters. Several low-lying isomers are determined, and many of them in electronic configurations with a high spin multiplicity. The stability trend of Ag-doped Aun clusters is compared to that of pure Aun clusters. Our results indicate that the inclusion of two Ag atoms in the clusters lowers the cluster stability, indicating higher stability as the structures grow in size. The bigger energy difference between the Aun and Aun Ag2 curves as the structures grows in size. This information will be useful to understanding the enhanced catalytic activity and selectivity gained by using silver-doped gold catalyst.  相似文献   

10.
程秀围  关庆丰  范鲜红  陈波 《中国物理 B》2010,19(1):16103-016103
We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both samples are characterized by transmission electron microscopy, and the density and the size distribution of vacancy defect clusters are determined. Their transmittances are measured before and after irradiating the samples by protons with energy E=100~keV and dose φ =6× 1011/mm2. Our experimental results show that the density and the size of vacancy defect clusters increase with the increase of irradiation doses in the irradiated pure aluminium foils. As irradiation dose increases, vacancies incline to form larger defect clusters. In the irradiated filter, a large number of banded void defects are observed at the agglomerate boundary, which results in the degradation of the optical and mechanical performances of the filter after proton irradiation.  相似文献   

11.
朱亚波  张林  郭立童  项东虎 《中国物理 B》2010,19(12):126102-126102
This paper reports that carbon microcoils are grown through a chemical vapour deposit process, they are then embedded in silicone rubber, and manipulated to parallel with each other along their axes in the resulting composite. The impedance |Z| as well as phase angle θ of both the original carbon microcoil sheets and the aligned carbon microcoil/silicone rubber composites are measured. The results illustrate that carbon microcoils in different forms show different alternating current electric properties. The aligned carbon microcoils in the composites show stable parameters for f<104 Hz but a sharp decrease in both |Z| and θ for frequencies >104 Hz, which will also change as the carbon microcoils are extended. But, the original sheets have a pure resistance with their parameters stable throughout the entire alternating current frequency range investigated.  相似文献   

12.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

13.
The hybrid density functional theory B3LYP with basis sets 6-31G* has been used to study on the equilibrium geometries and electronic structures of possible isomers of Si3N4 clusters. 24 possible isomers are obtained. The most stable isomer of Si3N4 is a 3D structure with 7 Si-N bonds and 2 N-N bonds that could beformed by 3 quadrangles. The bond properties of the most stable isomer was analyzed by using natural bond orbital method (NBO), the results suggest that the charges on Si and N atoms in Si-N bonds are quite large, so theinteraction of N-Si atoms in Si3N4 cluster is of strongly electric interaction. The primary IR and Raman vibrational frequency located at 1033.40 cm^-1, 473.63 cm^-1 respectively. The polarizabilities and hyperpolarizabilities of the most stable isomer are also analyzed.  相似文献   

14.
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.  相似文献   

15.
邵庆益  张娟 《中国物理 B》2011,20(8):86803-086803
In vapour deposition,single atoms (adatoms) on the substrate surface are the main source of growth.The change in its density plays a decisive role in the growth of thin films and quantum size islands.In the nucleation and cluster coalescence stages of vapour deposition,the growth of stable clusters occurs on the substrate surface covered by stable clusters.Nucleation occurs in the non-covered part,while the total area covered by stable clusters on the substrate surface will gradually increase.Carefully taking into account the coverage effect,a revised single atom density rate equation is given for the famous and widely used thin-film rate equation theory,but the work of solving the revised equation has not been done.In this paper,we solve the equation and obtain the single-atom density and capture number by using a uniform depletion approximation.We determine that the single atom density is much lower than that evaluated from the single atom density rate equation in the traditional rate equation theory when the stable cluster coverage fraction is large,and it goes down very fast with an increase in the coverage fraction.The revised equation gives a higher value for the ’average’ capture number than the present equation.It also increases with increasing coverage.That makes the preparation of single crystalline thin film materials difficult and the size control of quantum size islands complicated.We also discuss the effect of the revision on coalescence and the number of stable clusters in vapour deposition.  相似文献   

16.
Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size,shape,and doping.In this work,the combination of the CALYPSO code and density functional theory(DFT)optimization is employed to explore the structural properties of neutral and anionic Mgn+1 and SrMgn(n=2-12)clusters.The results exhibit that as the atomic number of Mg increases,Sr atoms are more likely to replace Mg atoms located in the skeleton convex cap.By analyzing the binding energy,second-order energy difference and the charge transfer,it can be found the SrMg9 cluster with tower framework presents outstanding stability in a studied size range.Further,bonding characteristic analysis reveals that the stability of SrMg9 can be improved due to the strong s-p interaction among the atomic orbitals of Sr and Mg atoms.  相似文献   

17.
The first-principles method based on density-functional theory is used to investigate the geometries of the lowest-lying isomers of AunAg2 (n = 1 - 4) clusters. Several low-lying isomers are determined, and many of them in electronic configurations with a high spin multiplicity. The stability trend of Ag-doped Aun dusters is compared to that of pure Aun clusters. Our results indicate that the inclusion of two Ag atoms in the clusters lowers the cluster stability, indicating higher stability as the structures grow in size. The bigger energy difference between the Aun and AunAg2 curves as the structures grows in size. This information will be useful to understanding the enhanced catalytic activity and selectivity gained by using silver-doped gold catalyst.  相似文献   

18.
A theory of an electron affinity for an ionic cluster is proposed both in a quasiclassical approach and with quantization of a polarization electric field in a nanopartiele. A critical size of the cluster regarding in formation of an electron's autolocalized state, dependencies of energy and radius of a polaron on a cluster's size are obtained by a variational method. It has been found that binding energy of the electron in the cluster depends on a eluster's radius but a radius of electron's auto-localization does not depend on the cluster's radius and it equals to the polaron radius in a corresponding infinity crystal. A bound state of the electron in a cluster is possible only if the duster's radius is more than the polaron radius.  相似文献   

19.
The lowest energy structures of (SiO2)nO2 duster skeletons with size from n = 2 to 12 is investigated theoretically by genetic algorithm. The calculations based on the Tsuneyuki-Tsukada Aoki Matsui (TTAM) and Flikkema- Bromley (FB) potentials give the same result: n = 4 and n = 8 are the magic numbers in the virtual (SiO2)nO2 cluster sequence. This conclusion is in agreement with the experimental observation on the [(SiO2)nO2H3]- cluster sequence. The comparison of the present results with those from the density-functional-theory calculations on (SiO2)nO2H4 shows that addition of II atoms to the O terminals of (SiO2)nO2 clusters to form the complex (SiO2)nO2H4 clusters has only minor influence on the relative energies and the structures of different isomers. This means that the magic behaviour of the dusters [(SiO2)nO2H3]^- (n=4,8) observed in our previous experiment is originated from the stability of the cluster skeletons (SiO2)nO2 (n = 4, 8) .  相似文献   

20.
The electronic structure of Ti8C12 clusters with three possible geometric structures suggested in the literature is studied using the discrete-variational local-density-functional method. The results show that the ground states of the clusters are all degenerate, which means further Jahn-Teller distortions for the geometric structures of clusters. The results also indicate that the distorted dodecahedral Ti8C12 cluster, which is proposed by Guo et al. and optimized by the first principle calculations, is the most stable one among the clusters we considered and its electronic structure can explain the experimental observations. In this cluster, there is a strong pd bonding between Ti and C atoms, and the density of states at the Fermi energy is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号