首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

2.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

3.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

4.
Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters. Received 29 November 2000  相似文献   

5.
Optical properties of mixed clusters (AuxAg 1 - x ) n and (NixAg 1 - x ) n , produced by laser vaporization and embedded in an alumina matrix, are reported. The size effects are investigated for different concentrations (x = 0.25, 0.5 and 0.75) in the diameter range 2-4 nm. For alloyed clusters (AuxAg 1 - x ) n of a given size an almost linear evolution of the surface plasmon frequency ω s with the concentration is observed (between those of pure gold and pure silver clusters). Moreover the blue-shift and the damping of the resonance with decreasing size is all the more important as the gold concentration in the particles increases. Such results are in agreement with theoretical calculations carried out in the frame of the time-dependent local-density-approximation (TDLDA) including an inner skin of ineffective screening and the porosity of the matrix. The optical response of (NixAg 1 - x ) n clusters exhibits a surface plasmon resonance in the same spectral range as the one observed for pure silver clusters, but considerably damped and broadened. For a given mean cluster size 3.0 nm, a blue-shift of the resonance is observed when increasing the nickel concentration (between x = 0.25 and x = 0.75). The results are in good qualitative agreement with classical predictions in the dipolar approximation, assuming a core-shell geometry. Received 21 November 2000  相似文献   

6.
Systematic study of small BN clusters   总被引:2,自引:0,他引:2  
We performed a systematic investigation of the small BxNy (x + y? 6) clusters using the ab initio Hartree-Fock scheme plus second-order perturbation theory. The nature of the potential energy surface extrema are analyzed through analytical total energy second derivatives. Ionization potentials, binding energies and the stability against some possible reaction mechanisms are calculated. Based on these results we propose that the growing process for these clusters is mainly due to the successive incorporation of BN molecules. A discussion of some mass spectrometry experimental results is also presented. Received 2 October 2000  相似文献   

7.
Tight-binding model is developed to study the structural and electronic properties of silver clusters. The ground state structures of Ag clusters up to 21 atoms are optimized by molecular dynamics-based genetic algorithm. The results on small Agn clusters (n = 3-9) are comparable to ab initio calculations. The size dependence of electronic properties such as density of states, s-d band separation, HOMO-LUMO gap, and ionization potentials are discussed. Magic number behavior at Ag2, Ag8, Ag14, Ag18, Ag20 is obtained, in agreement with the prediction of electronic ellipsoid shell model. We suggest that both the electronic and geometrical effect play significant role in the coinage metal clusters. Received 7 August 2000  相似文献   

8.
Recent experimental data on the dipole plasmon in axial sodium clusters Na N + with 11 ≤ N ≤ 57 are analyzed within a self-consistent separable random-phase approximation (SRPA) based on the deformed Konh-Sham functional. Good agreement with the data is achieved. The calculations show that, while in light clusters plasmon properties (gross structure and width) are determined mainly by deformation splitting, in medium clusters with N τ 50 the Landau fragmentation becomes decisive. Moreover, in medium clusters shape isomers come to play with contributions to the plasmon comparable with the ground state one. As a result, commonly used methods of the experimental analysis of cluster deformation become useless and correct treatment of cluster shape requires microscopic calculations.  相似文献   

9.
Metallic evolution of small magnesium clusters   总被引:1,自引:0,他引:1  
Structural and electronic properties of small magnesium clusters (N≤13) are studied using a first-principles simulation method in conjunction with the density functional theory and generalized gradient correction approximation for the exchange-correlation energy functional. It is observed that the onset of metallization of magnesium clusters is hard to assign since both the s-p hybridization and the energy gap between the valence and conduction bands do not evolve rapidly towards the known bulk properties. Instead these quantities show a slow and nonmonotonic evolution. Received 15 November 2000  相似文献   

10.
The effect of melting transition on the ionization potential has been studied for sodium clusters with 40, 55, 142, and 147 atoms, using ab initio and classical molecular dynamics. Classical and ab initio simulations were performed to determine the ionization potential of Na142 and Na147 for solid, partly melted, and liquid structures. The results reveal no correlation between the vertical ionization potential and the degree of surface disorder, melting, or the total energy of the cluster obtained with the ab initio method. However, in the case of 40 and 55 atom clusters, the ionization potential seems to decrease when the cluster melts. Received 1st November 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: ar@phys.jyu.fi  相似文献   

11.
The interaction of large ammonia and water clusters in the size range from <n> = 10 to 3 400 with electrons is investigated in a reflectron time-of-flight mass spectrometer. The clusters are generated in adiabatic expansions through conical nozzles and are nearly fragmentation free detected by single photon ionization after they have been doped by one sodium atom. For ammonia also the (1+1) resonance enhanced two photon ionization through the state with v = 6 operates similarly. In this way reliable size distributions of the neutral clusters are obtained which are analyzed in terms of a modified scaling law of the Hagena type [Surf. Sci. 106, 101 (1981)]. In contrast, using electron impact ionization, the clusters are strongly fragmented when varying the electron energy between 150 and 1 500 eV. The number of evaporated molecules depends on the cluster size and the energy dependence follows that of the stopping power of the solid material. Therefore we attribute the operating mechanism to that which is also responsible for the electronic sputtering of solid matter. The yields, however, are orders of magnitude larger for clusters than for the solid. This result is a consequence of the finite dimensions of the clusters which cannot accommodate the released energy. Received 21 November 2001  相似文献   

12.
The isomerization and evaporation processes in the neutral homogeneous (CH3CN)n molecular clusters (n = 2-7) have been investigated using classical molecular dynamics simulations. The evaporation rate constants and the kinetic energy release in the dissociation have been analysed as a function of the cluster size and as a function of the internal energy in the parent cluster. The competition between monomer and dimer ejections has been also carefully studied. All the dynamical properties in these dissociative processes have been discussed in relation to the static properties of the clusters involved in the dissociation and also in relation to the solid-liquid like transition which appears in these homogeneous molecular clusters. Received 19 November 2002 / Received in final form 5 February 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: pascal.parneix@ppm.u-psud.fr RID="b" ID="b"Laboratoire associé à l'université Paris-Sud.  相似文献   

13.
Scanning tunnelling microscopy (STM) and molecular dynamics (MD) simulations have been used to investigate the implantation of Ag7 - clusters into the graphite surface. An experimental measure of the implantation depth of individual clusters is gained via thermal oxidation of the bombarded graphite surfaces. This process results in etching of the cluster-induced defects to form etch pits which grow laterally whilst retaining the depth of the implanted cluster. STM imaging of the etch pits reveals the distribution of implantation depths for deposition energies of 2 keV and 5 keV. Molecular dynamics simulations for clusters of 5 keV energy show that the implantation depth for Ag7 - is largely independent of the impact site on the graphite surface and the cluster orientation. The implantation depth found by MD lies at the upper edge of the experimental depth distribution. Received 30 November 2000  相似文献   

14.
Neutral ammonia clusters (NH3)m are photo-excited to the electronic state by a deep UV femtosecond laser pump pulse. Within a few hundred femtoseconds a significant fraction of the clusters rearrange to form an H-transfer state (NH3)m-2NH4(3s)NH2 with the subunit NH4 in its 3s electronic ground state. This state is then electronically excited by a time-delayed infrared control pulse of variable wavelength. Finally, a third (probe) pulse in the UV ionizes the clusters for detection. The lifetime of the excited (NH3)m-2NH4(3p)NH2 states is found to vary between 2.7 and 0.13 ps depending on cluster size and excitation energy. It increases drastically upon deuteration. The corresponding cluster size-dependent photoelectron spectra allow us to disentangle the underlying energetics of the excitation and ionization process and reveal additional processes, such as nonresonant ionization or dissociative ionization. The experimental findings suggest that the excited H-transfer ammonia complexes with m > 2 are deactivated by an internal conversion process back to the electronically lowest H-transfer state followed by fast dissociation. Received 22 September 2001 and Received in final form 31 January 2002  相似文献   

15.
An analysis of integral cross sections for slow electron collisions with neutral sodium clusters and nanoparticles reveals that, in addition to an effective negative ion formation channel, there exists a strong inelastic threshold-type process which appears above a collision energy of 1-1.3 eV. We show that it can be plausibly associated with the onset of direct electron-induced cluster fragmentation. This result highlights the importance of understanding the dynamics of electron-vibrational energy transfer in nanoclusters, including the relative probability of direct vs. statistical energy transfer. Received 24 November 2000  相似文献   

16.
The cyclotron frequencies of singly charged carbon clusters Cn + (n ≥ 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy δm/m = 1.2 . 10-8 and the extent of the mass-dependent systematic shift (δm/m)sys = 1.7(0.6) . 10-10/u . (m - m ref) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope 12C are now possible at ISOLTRAP. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: klaus.blaum@cern.ch  相似文献   

17.
Thermionic emission from hot fullerene anions, CN -, has been measured in an electrostatic storage ring for even N values from 36 to 96. The decay is quenched by radiative cooling and hence the observations give information on the intensity of thermal radiation from fullerenes. The experiments are analysed by comparison with a simulation which includes the quantisation of photon energy and the statistics of emission. Experiments with heating of the molecules with a laser beam confirm the interpretation of the observations in terms of radiative cooling and give an independent estimate of the cooling rate for C60 -. The measured cooling rates agree in general within a factor of two with the prediction from a classical dielectric model of a thermal radiation intensity of ∼ 300 eV/s for C60 at 1 400 K, scaling approximately with the 6th power of the temperature and with the number of atoms in the molecule. Received 12 March 2001 and Received in final form 12 June 2001  相似文献   

18.
The dimer dissociation energies of gold cluster ions Au + n , n = 9, 11, 13, 15 have been determined with an extension of a recently developed model-independent method. Monomer-dimer decay pathway branching ratios provide the energy dependent process which is needed in this method. The measured values are D 2 ( Au + 9 ) = 3.66(8)(9) eV, D 2 ( Au + 11 ) = 4.27(11)(8) eV, D 2 ( Au + 13 ) = 4.50(9)(7) eV and D 2 ( Au + 15 ) = 4.29(10)(6) eV. Received 13 May 2002 / Received in final form 22 July 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: manuel.vogel@uni-mainz.de  相似文献   

19.
Reactive accelerated cluster erosion (RACE) of single crystal artificial diamond has been used to fabricate various nano- and microstructures. Carbondioxide clusters of about 1000 molecules are accelerated to 100 keV to act as the eroding agent. Using movable shadow masks, the accelerated cluster beam may erode staircase structures acting as an optical grating. A cycloid gear has been generated via a stationary nickel mask. Non-reactive accelerated cluster erosion using argon clusters will be considered for comparison. Received 30 November 2000  相似文献   

20.
Theoretical and experimental information on the shape and morphology of bare and passivated gold clusters is fundamental to predict and understand their electronic, optical, and other physical and chemical properties. An effective theoretical approach to determine the lowest-energy configuration (global minimum) and the structures of low energy isomers (local minima) of clusters is to combine genetic algorithms and many-body potentials (to perform global structural optimizations), and first-principles density functional theory (to confirm the stability and energy ordering of the local minima). The main trend emerging from structural optimizations of bare Au clusters in the size range of 12-212 atoms indicates that many topologically interesting low-symmetry, disordered structures exist with energy near or below the lowest-energy ordered isomer. For example, chiral structures have been obtained as the lowest-energy isomers of bare Au28 and Au55 clusters, whereas in the size-range of 75-212 atoms, defective Marks decahedral structures are nearly degenerate in energy with the ordered symmetrical isomers. For methylthiol-passivated gold nanoclusters [Au28(SCH3)16 and Au38(SCH3)24], density functional structural relaxations have shown that the ligands are not only playing the role of passivating molecules, but their effect is strong enough to distort the metal cluster structure. In this work, a theoretical approach to characterize and quantify chirality in clusters, based on the Hausdorff chirality measure, is described. After calculating the index of chirality in bare and passivated gold clusters, it is found that the thiol monolayer induces or increases the degree of chirality of the metallic core. We also report simulated high-resolution transmission electron microscopy (HRTEM) images which show that defects in decahedral gold nanoclusters, with size between 1-2 nm, can be detected using currently available experimental HRTEM techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号