首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the density functional theory, the initial dehydrogenation of methanol on NixMy (M?=?Ni, Co, Fe, Mn, Cr, x?+?y?=?4, y?=?1, 2) clusters is investigated. Two adsorption and dehydrogenation mechanisms of methanol are studied: one proceeds along the C–H scission and another begins with the breaking of the O-H bond. The adsorption sites of methanol on the Ni or M sites of the NixMy clusters are considered. The adsorption of methanol on Ni4 cluster is stronger than those on bimetallic clusters, while the initial dehydrogenation barriers on NixMy clusters are lower than that on Ni4 cluster. The comparable energy barriers of two pathways (O–H or C–H dissociation) on Ni-based clusters indicate that these two paths are quite competitive. In addition, the Ni2M2 clusters show superior activation performance compared with the Ni3M clusters, especially for Ni2Mn2 and Ni2Cr2 clusters. The effects of alloyed metal on the catalytic activity of Ni for methanol initial dehydrogenation, including the adsorption energy, O–H or C–H bond scission barrier and frontier molecular orbital levels, are discussed. It can be concluded that the addition of Co, Fe, Mn and Cr to Ni catalyst is able to enhance the activity of the methanol dehydrogenation reaction.  相似文献   

2.
ABSTRACT

We report a theoretical investigation of neutral AuxAgyCuz and cationic AuxAgyCuz+ ternary clusters, for x?+?y+z?=?5 and 6. Our study is performed within density functional theory at the TPSSTPSS/SDD level. The geometries, chemical order, binding energy, mixing energy, second difference in the energy, adiabatic ionisation potential of these clusters are evaluated as a function of the whole concentration range. The most probable dissociation channels and the corresponding dissociation energies for the most stable clusters are also determined and discussed.  相似文献   

3.
An ab initio study of the Nan(OH)n, Nan(OH)n-1 +, Agn(OH)n, and Agn(OH)n-1 + clusters with n up to four is presented. The results of this study show that, in accordance with experimental observations, the sodium hydroxide clusters are almost purely ionic, while the Ag-O bond exhibits a significant covalent character. The perturbation caused by the non-spherical OH- group relatively to an atomic anion, as well as the influence on structures and energies of the covalent character of the metal-oxygen bond are determined. The appearance of metal-metal bonds in the silver hydroxide clusters is also discussed. Finally, the theoretical results obtained on the Na-OH clusters are compared to experimental results available on the dissociation of the Nan(OH)n-1 + clusters. Received 9 August 1999 and Received in final form 1st December 1999  相似文献   

4.
The reaction mechanism of O2 dissociation on PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy catalysts have been investigated with density functional theory calculations in this work. For bare alloy clusters, bimetallic clusters are more stable than the ternary alloy clusters. The geometries of the PtxRuyMz–O2 system, O–O bond stretching frequency and electronic-structure details have been investigated. The energies of O2 adsorption on PtRu clusters are slightly higher than those on PtxRuyMz clusters, and the more charge transfer to O2 from the metal cluster, the higher O2 the adsorption energy obtains. The reaction barriers show that the catalytic performance of trimetallic clusters are better than those of bimetallic clusters, and Pt2RuM clusters exhibit superior catalytic activity for O2 dissociation. The different performance of these alloy clusters for O2 dissociation is scrutinised with aid of molecular orbital and natural bond orbital population analysis.  相似文献   

5.
The ionic and electronic structure of (Al2O3)n(Ox) clusters with n 16 and x = 0, 1, 2 is studied by means of first principles density functional calculations, norm-conserving pseudopotentials and a numerical atomic basis set. The equilibrium geometries have been determined by total energy minimization, starting with several initial geometries for each cluster size. The trends obtained for the atomic arrangements (structural isomers, coordination numbers, disordered versus ordered structures, etc.) and the electronic properties (binding energies, Homo-Lumo gap and dipole moments) are discussed. For most of the oxidized clusters studied here we find that the Homo-Lumo gap and the magnitude of dipole moment of isomeric species can vary drastically.  相似文献   

6.
Optical properties of mixed clusters (AuxAg 1 - x ) n and (NixAg 1 - x ) n , produced by laser vaporization and embedded in an alumina matrix, are reported. The size effects are investigated for different concentrations (x = 0.25, 0.5 and 0.75) in the diameter range 2-4 nm. For alloyed clusters (AuxAg 1 - x ) n of a given size an almost linear evolution of the surface plasmon frequency ω s with the concentration is observed (between those of pure gold and pure silver clusters). Moreover the blue-shift and the damping of the resonance with decreasing size is all the more important as the gold concentration in the particles increases. Such results are in agreement with theoretical calculations carried out in the frame of the time-dependent local-density-approximation (TDLDA) including an inner skin of ineffective screening and the porosity of the matrix. The optical response of (NixAg 1 - x ) n clusters exhibits a surface plasmon resonance in the same spectral range as the one observed for pure silver clusters, but considerably damped and broadened. For a given mean cluster size 3.0 nm, a blue-shift of the resonance is observed when increasing the nickel concentration (between x = 0.25 and x = 0.75). The results are in good qualitative agreement with classical predictions in the dipolar approximation, assuming a core-shell geometry. Received 21 November 2000  相似文献   

7.
Theoretical and experimental information on the shape and morphology of bare and passivated gold clusters is fundamental to predict and understand their electronic, optical, and other physical and chemical properties. An effective theoretical approach to determine the lowest-energy configuration (global minimum) and the structures of low energy isomers (local minima) of clusters is to combine genetic algorithms and many-body potentials (to perform global structural optimizations), and first-principles density functional theory (to confirm the stability and energy ordering of the local minima). The main trend emerging from structural optimizations of bare Au clusters in the size range of 12-212 atoms indicates that many topologically interesting low-symmetry, disordered structures exist with energy near or below the lowest-energy ordered isomer. For example, chiral structures have been obtained as the lowest-energy isomers of bare Au28 and Au55 clusters, whereas in the size-range of 75-212 atoms, defective Marks decahedral structures are nearly degenerate in energy with the ordered symmetrical isomers. For methylthiol-passivated gold nanoclusters [Au28(SCH3)16 and Au38(SCH3)24], density functional structural relaxations have shown that the ligands are not only playing the role of passivating molecules, but their effect is strong enough to distort the metal cluster structure. In this work, a theoretical approach to characterize and quantify chirality in clusters, based on the Hausdorff chirality measure, is described. After calculating the index of chirality in bare and passivated gold clusters, it is found that the thiol monolayer induces or increases the degree of chirality of the metallic core. We also report simulated high-resolution transmission electron microscopy (HRTEM) images which show that defects in decahedral gold nanoclusters, with size between 1-2 nm, can be detected using currently available experimental HRTEM techniques.  相似文献   

8.
The spectra of deep inner-core excited mixed rare-gas clusters were recorded by using electron ion coincidence (EICO) and multi-hit momentum imaging (MHMI) techniques. The EICO spectra for Ar99Kr1 clusters reveal that singly charged ions are emitted from the inner-core excited clusters in addition to the multiple charged ions. The dependence of the EICO spectra on photon energy and cluster size suggests that the holes created through vacancy cascade on the krypton atoms are transferred to the surrounding atoms, and that the singly charged ions are the primary product of the krypton photoabsorption. Charge localization is suggested for the inner-core excited mixed rare-gas clusters from the analysis of the EICO peak width. The MHMI measurements give us direct evidence for the strong charge migration from X-ray absorbing atoms to surrounding atoms. The photon energy dependence of the PSD image for fragment ions suggests that the momentum of the fragment ions depends on the number of charges generated by the vacancy cascade.  相似文献   

9.
The geometrical structure of ground state Ban clusters (n =2-14) has been predicted from various types of calculations including two ab initio approaches used for the smaller sizes namely HF+MP2( n =2-6), DFT (LSDA)( n =2-6, 9) and one model approach HF+pairwise dispersion used for all sizes investigated here. The lowest energy configurations as well as some isomers have been investigated. The sizes n =4, 7 and 13 are predicted to be the relatively more stable ones and they correspond to the three compact structures: the tetrahedron, the pentagonal bipyramid and the icosahedron. The growth behavior from Ba7 to Ba13 appears to be characterized by the addition of atoms around a pentagonal bipyramid leading to the icosahedral structure of Ba13 which is consistent with the observed size-distribution of barium clusters. Values for vertical ionization potentials calculated for n =2-5 at the CI level are seen to be in quite good agreement with recent measures. Received: 14 May 1997 / Received in final form: 2 February 1998 / Accepted: 27 February 1998  相似文献   

10.
The cross-sections for collisional charge transfer between singly charged free clusters M n + (M = Li, Na; n=1...50) and atomic targets A (cesium, potassium) have been measured as a function of collisional relative velocity in laboratory energy range 1–10 keV. For each cluster size, the experimental values of the charge transfer cross-section are fitted with an universal parametric curve with two independent parameters and vm, the maximum cross-section and the corresponding velocity. For small size clusters (), the characteristic parameters show strong variations with the number of atoms in the cluster. Abrupt dips observed for n=10 and n=22 are attributed to electronic properties. Charge transfer patterns observed for various collisional systems present similarities, which appear more sensitive to cluster quantum size effects than to collision energy defects. In their whole, the and vm parameters show differences in both their size evolution and their absolute values discussed in term of projectile and target electronic structures. Received 13 April 2000 and Received in final form 29 June 2000  相似文献   

11.
12.
Using a high resolution laser photoelectron attachment method, we have studied the formation of (H 2 O) q - (q = 2, 6, 7, 11, 15) cluster ions in collisions of slow free electrons (E = 1-80 meV) and Rydberg electrons (n = 12-300) with water clusters. Resonances at zero energy have been observed, the shapes of which are strongly dependent on cluster size. The results are discussed in terms of the formation of metastable negative ions. Received 8 March 1999  相似文献   

13.
Metastable fragmentation of silver bromide clusters   总被引:2,自引:0,他引:2  
The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are AgnBrn - 1 + and AgnBrn + 1 - and Ag14Br13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, AgnBrn - 1 + is no more the main series, and AgnBr n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag3Br3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag+-Ag+ repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr)3 and to quasi-planar cyclic structures of (AgBr)n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH)n, and to cuprous halide compounds. Received 9 November 2000 and Received in final form 25 January 2001  相似文献   

14.
Resonant Auger spectra of O2 clusters excited at the O1s edge are reported. After excitation to the repulsive 1s-1* state, the resulting resonant Auger spectrum displays features that remain constant in kinetic energy as the photon energy is detuned. The shift between known atomic fragment features and these features is consistent with that observed for atoms and clusters in singly charged states in direct photoemission. These findings are strong evidence for the existence of molecular ultrafast dissociation processes within the clusters or on their surface.  相似文献   

15.
We present a first-principles pseudopotential optimization of the lower energy equilibrium structure of SinSc- anions for n=14-18. We find that Si16Sc- is more stable than its neighbors clusters, in agreement with recent experimental mass spectra. We also optimize the geometry of pure Sin neutral clusters in the range n=14-18, and compare our results with those from previous first-principles calculations.  相似文献   

16.
The effect of melting transition on the ionization potential has been studied for sodium clusters with 40, 55, 142, and 147 atoms, using ab initio and classical molecular dynamics. Classical and ab initio simulations were performed to determine the ionization potential of Na142 and Na147 for solid, partly melted, and liquid structures. The results reveal no correlation between the vertical ionization potential and the degree of surface disorder, melting, or the total energy of the cluster obtained with the ab initio method. However, in the case of 40 and 55 atom clusters, the ionization potential seems to decrease when the cluster melts. Received 1st November 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: ar@phys.jyu.fi  相似文献   

17.
The stability of neutral, singly and multiply ionized silicon clusters, (N = 2-7, M = 0, , , ), has been investigated using an ab initio density functional method. We show that the fragmentation effect significantly affects the structure of mass-spectra of multiply ionized silicon clusters. For clusters, the clusters with a large fragmentation energy are found to correspond to the high peaks at N = 4 and 6 in mass-spectra. For clusters, a peak at N = 5 in mass-spectra has been predicted to be especially high. Received: 9 June 1997 / Revised: 8 January 1998 / Accepted: 25 February 1998  相似文献   

18.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

19.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

20.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号