首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对声学有限元分析中四节点等参单元计算精度低,对网格质量敏感的问题,将光滑有限元法引入到多流体域耦合声场的数值分析中,提出了二维多流体域耦合声场的光滑有限元解法。该方法在Helmholtz控制方程与多流体域耦合界面的声压/质点法向速度连续条件的基础上,得到二维多流体耦合声场的离散控制方程,并采用光滑有限元的分区光滑技术将声学梯度矩阵形函数导数的域内积分转换形函数的域边界积分,避免了雅克比矩阵的计算。以管道二维多流体域耦合内声场为数值分析算例,研究结果表明,与标准有限元相比,对单元尺寸较大或扭曲严重的四边形网格模型,光滑有限元的计算精度更高。因此光滑有限元能很好地应用于大尺寸单元或扭曲严重的网格模型下二维多流体域耦合声场的预测,具有良好的工程应用前景。   相似文献   

2.
在声场仿真中,完全匹配层(Perfectly Matched Layer,PML)是一种十分有效的吸收边界并得到广泛应用。为了解决基于二阶声场波动方程数值仿真中的吸收边界问题,提出了一种非分裂PML算法。首先,基于伸缩坐标变换,推导了PML算法的频域表达式。然后,通过构造辅助微分方程,得到了非分裂PML的时域表达式。最后,进行了相关理论分析和数值仿真,结果表明:相对于已有的声场分裂PML算法,该算法在保持相同的吸收效率的同时,能较大地节约存储空间,提高计算效率,且更易于实现。   相似文献   

3.
The Acoustic Energy Flow Boundary Element Method (AEFBEM) is developed to predict the acoustic energy density and intensity of an engineering system. Up to now, the acoustic energy flow model has been used only for analysis of high frequencies or radiation noise because of plane wave and far-field assumptions. In this research, a new energy flow governing equation that can consider the near field acoustic energy term and spherical wave characteristics is derived successfully to predict the acoustic energy density and intensity of a system in the medium-to-high frequency range. A near field term of acoustic energy in spherical coordinate is added to the relationship between energy density and energy flow. But with the far-field assumption, this term vanishes, so the relationship between energy density and energy flow becomes the same as that of the plane wave. By considering the near field energy term without far-field assumption, the energy density at medium frequencies can be estimated. However, the governing equation has to be numerically manipulated for use in the analysis of complex structures; therefore, the Boundary Element Method (BEM) is implemented. AEFBEM is a numerical analysis method formulated by applying the boundary element method to an acoustic energy flow governing equation. It is very powerful in predicting the acoustic energy density and intensity of complex structures in medium-to-high frequency ranges, and can analyze interior noise and radiating sound. To verify its validity, several numerical results are provided. BEM and AEFBEM were compared with respect to energy density, and the results from both methods were similar.  相似文献   

4.
An algorithm for stabilizing linear iterative schemes is developed in this study. The recursive projection method is applied in order to stabilize divergent numerical algorithms. A criterion for selecting the divergent subspace of the iteration matrix with an approximate eigenvalue problem is introduced. The performance of the present algorithm is investigated in terms of storage requirements and CPU costs and is compared to the original Krylov criterion. Theoretical results on the divergent subspace selection accuracy are established. The method is then applied to the resolution of the linear advection–diffusion equation and to a sensitivity analysis for a turbulent transonic flow in the context of aerodynamic shape optimization. Numerical experiments demonstrate better robustness and faster convergence properties of the stabilization algorithm with the new criterion based on the approximate eigenvalue problem. This criterion requires only slight additional operations and memory which vanish in the limit of large linear systems.  相似文献   

5.
Shape design sensitivity analysis for the radiated noise from the thin-body   总被引:1,自引:0,他引:1  
Many industrial applications generally use thin-body structures in their design. To calculate the radiated noise from vibrated structure including thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation is not an effective resolution. Thus, many researchers have studied to resolve the thin-body problem in various physical fields. No major study in the design sensitivity analysis (DSA) fields for thin-body acoustics, however, has been reported.A continuum-based shape DSA method is presented for the radiated noise from the thin-body. The normal derivative integral equation is employed as an analysis formulation. And, for the acoustic shape design sensitivity formulation, the equation is differentiated directly by using material derivative concept. To solve the normal derivative integral equation, the normal velocities on the surface should be calculated. In the acoustic shape sensitivity formulation, not only the normal velocities on the surface are required but also derivative coefficients of the normal velocities (structural shape design sensitivity) are also required as the input. Hence, the shape design sensitivity of structural velocities on the surface, with respect to the shape change, should be calculated. In this research, the structural shape design sensitivities are also obtained by using a continuum approach. And both a modified interpolation function and the Cauchy principle value are used to regularize the singularities generated from the acoustic shape design sensitivity formulation.A simple annular disk is considered as a numerical example to validate the accuracy and efficiency of the shape design sensitivity equations derived in this research. The commercial BEM code, SYSNOISE, is utilized to confirm the results of the developed in-house code based on a normal derivative integral equation. To validate the calculated design sensitivity results, central finite difference method (FDM) is employed. The error between FDM and the analytical result are less than 3%. This comparison demonstrates that the proposed design sensitivities of the radiated pressure are very accurate.  相似文献   

6.
We present a new algorithm for the evaluation of the quasi-periodic Green function for a linear array of acoustic point sources such as those arising in the analysis of line array loudspeakers. A variety of classical algorithms (based on spatial and spectral representations, Ewald transformation, etc.) have been implemented in the past to evaluate these acoustic fields. However as we show, these methods become unstable and/or impractically expensive as the frequency of use of the sources increases. Here we introduce a new numerical scheme that overcomes some of these limitations allowing for simulations at unprecedentedly large frequencies. The method is based on a new integral representation derived from the classic spatial form, and on suitable further manipulations of the relevant integrands to render the integrals amenable to efficient and accurate approximations through standard quadrature formulas. We include a variety of numerical results that demonstrate that our algorithm compares favorably with several classical methods both for points close to the line where the poles are located and at high-frequencies while remaining competitive with them in every other instance.  相似文献   

7.
The enhancement of heat transfer in a cavity was investigated in the absence of and in the presence of acoustic streaming induced by ultrasonic waves. The present study provides the experimental and numerical results of heat transfer in the acoustic fields. The enhancement of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. A coupled finite element-boundary element method (FE-BEM) was applied for a numerical analysis. Experimental and numerical studies clearly show that pressure variations are closely related to the enhancement of heat transfer in the acoustic fields.  相似文献   

8.
This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.  相似文献   

9.
A numerical algorithm for acoustic noise predictions based on solving Lilley's third order wave equation in the time-space domain is developed for a subsonic axisymmetric jet. The sound field is simulated simultaneously with the source field calculation, which is based on a direct solution of the compressible Navier-Stokes equations. The computational domain includes both the nearfield and a portion of the acoustic farfield. In the simulation, the detailed sound source structure is provided by the nearfield direct numerical simulation (DNS), while the sound field is obtained from both the DNS and the numerical solution to the non-linear Lilley's equation. The source terms of Lilley's equation are used to identify the apparent sound source locations in the idealized axisymmetric low-Reynolds number jet. The sound field is mainly discussed in terms of instantaneous pressure fluctuations, frequency spectra, acoustic intensity and directivity. A good agreement is found between the predictions from the axisymmetric Lilley's equation and the DNS results for the sound field. Limitations and perspectives of the simulation are also discussed.  相似文献   

10.
In this work are investigated two topics associated with numerical calculations of the transmission loss in acoustical silencers: analysis of acoustic chambers employing active/inactive finite elements and its optimization using the GA (genetic algorithm) with integer variables. The technical information on the use of active/inactive elements and the definition of all the design variables used for the entire control of the finite element mesh are detailed. Although simple, the numerical results for the examples analyzed show excellent convergence achieved with the combination of these two techniques for the optimization of symmetrical acoustic chambers.  相似文献   

11.
Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier–Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller–Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler–Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode.  相似文献   

12.
以亚临界三维圆柱绕流的气动噪声为对象,研究声类比理论中偶极子及四极子源模型在预测低Mach数流动气动声的可靠性及准确性。使用大涡模拟(LES)得到非定常流场,并依据声类比中的Curle等效偶极子面源和Lighthill四极子体源模型,提取相应的声源数据,经Fourier变换得到涡脱落频率处的声源信息,进而定量预测圆柱绕流的气动声。结果表明:Curle模型的结果与实验结果吻合良好,Lighthill体源模型预测的准确性依赖于声源区域截断,不恰当的声源截断将导致错误的声场预测。   相似文献   

13.
高翔  李鉴  师芳芳  马军  王文  汪承灏 《声学学报》2018,43(4):655-664
基于时间反转和逆时偏移混合方法用于分层介质中目标的声学检测和定位的原理,本文对分层介质中目标检测和定位的声场进行了数值分析。首先给出了声场分布数值仿真的方法和步骤,进一步采用单发多收和多发多收两种方式对单个目标和多个目标计算出其声场分布。数值仿真结果表明可以较好地实现对目标的检测和定位。比较发现,单发单收方式和多发多收方式都得到较好的结果,但多发多收方式计算耗时过多,因此不宜采用。另外,对多个目标的探测提出了改进方法。   相似文献   

14.
The Dual Reciprocity Boundary Element Method (DRBEM) is applied to predict the acoustic characteristics of ducts and silencers with three-dimensional potential flow, and the basic principle and numerical procedure of the proposed method are introduced. Compared to the Conventional Boundary Element Method (CBEM), the DRBEM takes into account the second order terms of flow Mach number in the acoustic governing equation, which is suitable for the situations with higher Mach number subsonic flow. The four-pole parameters of a duct and a varying cross-sectional area expansion chamber are predicted with the DRBEM, and the predictions are compared with the one-dimensional analytical solutions and the CBEM results. The comparisons demonstrated that the present method is valid. Transmission loss of silencers with different structures was also calculated with the DRBEM. The results showed that the influence of the three-dimensional flow on the acoustic characteristics of silencers with complex structures is not negligible.  相似文献   

15.
This paper proposes an automatic structure overset grid method, which utilizes the hole-surface optimization with one-step searching, wall-surface grid oversetting, and dynamic overset grid approaches to achieve the high adaptability of overset grids for complex multi-body aircrafts. Specifically, based on the automatic structure overset grids, the method first solves the coupling of Navier-Stokes(N-S) unsteady flow equation and 6DOF motion equation, and establishes the multi-body collision model. Then, the numerical simulation of unsteady flow for complex aircrafts' multi-body separation, the simulation of multi-body separating trajectory and the separation safety analysis are accomplished. Thus, the method can properly handle practical engineering problems including the wing/drop tank separation, aircraft/mount separation, and cluster bomb projection. Experiments show that our numerical results match well with experimental results, which demonstrates the effectiveness of our methods in solving the multi-body separation problem for aircrafts with complex shapes.  相似文献   

16.
An exact solution for one-dimensional acoustic fields in ducts in the presence of an axial mean temperature gradient and mean flow is presented in this paper. The analysis is valid for mean Mach numbers such that the square of the mean Mach number is much less than one. The one-dimensional wave equation for ducts with axial mean temperature gradient and mean flow is derived. By appropriate transformations, the wave equation is reduced to an analytically solvable hypergeometric differential equation for the case of a linear mean temperature profile. The developed solution is applied to investigate the dependence of sound propagation in a duct on factors such as temperature gradient and mean flow. The results obtained using the analytical solution compare very well with the numerical results. The developed solution is also compared with an existing analytical solution.  相似文献   

17.
The Boltzmann simplified velocity distribution function equation describing the gas transfer phenomena from various flow regimes will be explored and solved numerically in this study. The discrete velocity ordinate method of the gas kinetic theory is studied and applied to simulate the complex multi-scale flows. Based on the uncoupling technique on molecular movement and colliding in the DSMC method, the gas-kinetic finite difference scheme is constructed to directly solve the discrete velocity distribution functions by extending and applying the unsteady time-splitting method from computational fluid dynamics. The Gauss-type discrete velocity numerical quadrature technique for different Mach number flows is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established to study the three-dimensional complex flows from rarefied transition to continuum regimes. The parallel strategy adapted to the gas-kinetic numerical algorithm is investigated by analyzing the inner parallel degree of the algorithm, and then the HPF parallel processing program is developed. To test the reliability of the present gas-kinetic numerical method, the three-dimensional complex flows around sphere and spacecraft shape with various Knudsen numbers are simulated by HPF parallel computing. The computational results are found in high resolution of the flow fields and good agreement with the theoretical and experimental data. The computing practice has confirmed that the present gas-kinetic algorithm probably provides a promising approach to resolve the hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view of solving the Boltzmann model equation. Supported by the National Natural Science Foundation of China (Grant Nos. 90205009 and 10321002) and the National Parallel Computing Center  相似文献   

18.
This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.  相似文献   

19.
Diesel engine generator sets in heavy industry plants and residential/official buildings can cause serious noise problems. In this paper, a low noise diesel engine generator set is developed through constructing an acoustic enclosure with ventilation duct silencers that effectively block the acoustic flow but guarantee good thermal flow. Acoustic design of the enclosure, which is initially layout by rule of thumb, is evolved systematically through numerical reanalysis procedure, based on indirect boundary element method (IBFM) with a commercial acoustic analysis code. The cooling performance of the acoustically determined enclosing structure is checked and confirmed through numerical heat flow analysis. The acoustic and cooling performances of the developed low noise diesel engine generator set are confirmed by the experiment.  相似文献   

20.
The shallow water equations coupled to the set of reaction–advection–diffusion equations are discretized on a geodesic icosahedral mesh using the finite volume technique. The method of solution of this coupled system is based on the principle of semi-discretization. The algorithm is mass conserving and stable for advection with the Courant numbers up to 2.7. The important part of the methodology is the optimization of the node positions in the icosahedral grid. It is shown that a slight adjustment of the mesh is instrumental in improving the accuracy of the numerical approximation. The convergence of the approximation of the differential operators is evaluated and compared to the data published in the literature. Numerical tests performed with the shallow water solver include two advection experiments, steady and unsteady zonal balanced flow, mountain flow, and the Rossby wave. The mountain flow and the Rossby wave cases are used to test the transport properties of the method in the case of both passive and reactive scalar fields. The investigation of essential numerical characteristics of the method is concluded by the simulation of an unstable zonal jet. The numerical simulation is performed using the set of shallow water equations without dissipation as well as with the viscosity term added to the momentum equation. Results show that the behavior of the model is consistent with both the literature published on the subject and the general empirical evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号