首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
本文对颗粒煤在激光加热条件下的着火和燃烧进行了数值模拟。采用的是一个简单的煤粒着火与燃烧的一维模型。该模型采用了热解和双平行反应模型,考虑了煤粒表面的多相反应和气相的基元反应以及气相中的传热与传质。从获得的煤粒表面和气相空间的温度随时间的变化规律,可以判断不同煤种的着火方式。  相似文献   

2.
气体回流区分级着火试验研究   总被引:3,自引:0,他引:3  
就回流区分级着火燃烧方式在气体燃料燃烧上的应用进行了一系列冷热态模拟试验和工业试验研究.比较了直流、钝体和开缝钝体喷口的出口速度、温度分布,以及在不同气体燃料热值时的稳焰能力。试验表明,开缝钝体喷口中缝小股射流进入喷口后低速回流区能稳定着火,进一步点燃主流,有效地形成回流区分级着火;开维钝体喷口的稳焰能力最强,特别适合低热值煤气燃烧。在大容量锅炉上进行了低热值高炉煤气燃烧的改造性工业试验,试验证明,开缝钝体燃烧器强化了低热值煤气的燃烧,有效地解决了锅炉煤气段燃烧强度不足以至锅炉尾部超温问题。  相似文献   

3.
一、前言 近年来已有许多学者对煤浆的燃烧特性进行了大量的理论及实验研究。 如黄兆祥、吴忆峰等研究了水煤浆粒度配比对流动性及着火温度的影响;岑可法等将水煤浆燃烧分为蒸发、挥发份析出及燃烧和固定碳燃烧三个阶段;付维标等认为在强迫对流下,随来流速度的增加水煤浆滴着火温度提高,着火时间提前;T.Sakai和M.Saito认为油煤  相似文献   

4.
基于可调谐半导体激光吸收光谱技术和代数迭代算法(ART)实现燃烧场温度和浓度二维分布重建.采用时分复用技术,在1kHz扫描频率下分别扫描H2O的两条吸收谱线,7205.25和7416.05cm^-1,对温度分布在300-1100K范围内的气体温度场进行了重建.研究了投影角度和投影光线数目对温度场和浓度场重建结果的影响,并将温度场重建结果与热电偶测量结果进行比较,结果表明,采用四个投影方向时,温度场重建结果与热电偶测量结果除中心低温区域外基本符合.当光线数目减少时,通过在两条光线间增加虚拟光线,代入到迭代算法中,增加光线数目,提高了温度场和浓度场的重建效果.但此方法受到燃烧场温度梯度大小的影响,即在两条光线之间气体温度梯度较大,增加虚拟光线提高温度场重建效果不明显.  相似文献   

5.
煤燃烧的部分过程是在低氧浓度下进行的,本文利用热重实验研究煤在低氧浓度下燃烧特性的变化,重点研究着火特性、燃尽特性和燃烧速率的变化;同时计算分析低氧浓度下,煤燃烧反应动力学参数的变化。实验结果表明,低氧浓度下煤燃烧反应的TG和DTG曲线均向高温区靠近,着火温度基本不变,燃尽温度提高,燃烧速率下降;低氧浓度下燃烧反应的动力学参数活化能E和频率因子k_0之间存在着补偿效应。  相似文献   

6.
半焦燃烧特性的热重试验研究   总被引:4,自引:0,他引:4  
针对目前提倡的煤部分气化燃烧系统集成优化联合生产煤气和热能的新概念,在不同温度下制得四种煤的半焦,通过热天平燃烧试验研究了半焦的燃烧特性,考察了煤种和制备温度对半焦燃烧特性的影响.试验结果表明:煤种不同,所制得半焦燃烧特性不同;相同煤种制得半焦,随制备温度升高,半焦着火温度上升,燃烧活化能增加,燃烧反应活性降低.  相似文献   

7.
基于煤氧复合作用学说,建立了炭粒填充床燃烧的数学模型,研究了炭粒自然发火发生明火燃烧的分岔特性,揭示了炭粒由自燃发生明火燃烧本质上属于气相反应.在气相反应区,忽略多相反应区的影响,应用数值分岔理论,以Frank-Kamenetskii参数为分岔参数对气相着火-熄火的发生进行了分岔分析,指出了炭粒自燃向明火转捩的分岔曲线包含稳定的着火分支、熄火分支及非稳定状态分支共三个分支,分析了其着火和熄火的非线性特性,得出了发生气相反应的条件,并探讨了方程中的其他控制参数对炭粒发生明火燃烧过程中着火-熄火分岔特性的影响.  相似文献   

8.
本文应用贴体坐标结构化网格对复杂曲面的花瓣燃烧器进行了三维(360°)煤粉燃烧的数值模拟.给出了在75%BMCR和55%BMCR工况下花瓣燃烧器的流场和浓度场,重点分析了花瓣燃烧器的稳燃原理和特性.计算结果表明,在花瓣稳燃器的作用下,煤粉气流进入炉内能立即在瓣后的径向回流区内着火燃烧,并在此区域形成稳定的"值班火焰",为整个风粉气流的着火燃烧提供稳定的热量来源.有利于低挥发分煤在广泛负荷范围内的稳定着火和完全燃烧.  相似文献   

9.
燃烧场参数的激光诊断技术研究   总被引:11,自引:5,他引:6       下载免费PDF全文
 介绍了燃烧场参数的激光诊断技术的研究进展,给出了用自发拉曼散射、激光诱导荧光、相干反斯托克斯拉曼散射法诊断燃烧场温度和组分的实验系统和部分实验结果,单次测量火焰的温度和组分浓度相对误差小于10%;利用平面激光诱导荧光技术获得了稳定燃烧场二维OH荧光图像,并分析了激光作用区域火焰二维温度场的分布。  相似文献   

10.
煤粉颗粒的着火特性研究对于工业锅炉中煤的高效清洁利用和燃烧器稳定安全的运行具有十分重要的作用。本文基于平面火焰燃烧器,搭建了连续激光辅助高速摄像的光学测量系统,并结合自行开发的颗粒识别与追踪算法、着火时间判定方法、双色测温法等方法,开展了对不同煤种着火方式、着火延迟、着火温度等特性的研究。结果表明:烟煤和褐煤的着火方式为均相着火,且褐煤在脱挥发分过程中存在煤粉颗粒破碎的情况,而无烟煤的着火方式为异相着火;煤等级越低的煤着火延迟时间越短,着火时颗粒温度越低,着火越容易。  相似文献   

11.
This paper numerically investigates the ignition of a single coal particle during the devolatilization phase in a laminar entrained-flow reactor, for which experimental data are available from Molina and Shaddix [3]. Different numerical approaches are combined to evaluate the non-premixed flamelet approach for coal particle ignition. First, the particle trajectory and the particle heating are simulated with a Lagrangian–Eulerian approach using a detailed pyrolysis model. In a second step, these results are used as transient boundary conditions for a simulation fully resolving the flow, the mixing field and the chemical reactions around the particle. Finally, in combination with the boundary conditions the time-dependent scalar dissipation rate profiles from the resolved particle calculation are used in a flamelet calculation for the particle up- and downstream directions. Very good agreement is obtained in terms of ignition delay as well as temperature and chemical species distributions in the mixture fraction space when the resolved particle calculation and the unsteady flamelet calculation are compared in the downstream direction. Good agreement is obtained when the numerical results for the ignition time and the time-averaged OH distribution are compared with the available experimental data. The results show the capability of the laminar flamelet approach to correctly predict coal particle ignition during devolatilization using accurate scalar dissipation rate profiles.  相似文献   

12.
This work investigates the fundamental and practical implications of the application of drying technologies to Victorian brown coal combustion. The base case of 60% moisture content coal preheated prior to combustion is compared with partially dried coal (with or without pre-heating) and coal dried to equilibrium moisture content (10–15%). Pulverised coal was combusted in a drop tube furnace and in-situ observations of combustion phenomena, particle temperature and gas temperature were made. An ignition delay was found to occur when partially dried coal was combusted without pre-heating. Flame stability was also decreased when wet coal was combusted without pre-heating. No ignition delay was observed when the water in coal was heated prior to entering the furnace, as in current boilers. The peak particle temperature was found to be higher than the wall temperature by around 130 °C for dried coal, 80 °C for preheated wet coal and 40 °C for non-preheated partially dried coal. The gas temperature profile in the furnace was measured and found to lag behind the particle temperature peak. It was concluded that the evolution and evaporation of water in the wet case lead to an ignition delay, cooler peak particle temperatures and prolonged char combustion. The difference in particle temperatures between preheated wet coal and dried coal and the gas temperature behaviour was attributed to the steam gasification reaction, although studies to elucidate reasons for the differences are ongoing. The quantified results on ignition delay and particle temperatures have important implications for the design of new technologies, in particular the boilers and feed size preparation, for power generation from high-moisture brown coals.  相似文献   

13.
Oxy-fuel combustion of coal is a promising technology for cost-effective power production with carbon capture and sequestration that has ancillary benefits of emission reductions and lower flue gas cleanup costs. To fully understand the results of pilot-scale tests of oxy-fuel combustion and to accurately predict scale-up performance through CFD modeling, fundamental data are needed concerning coal and coal char combustion properties under these unconventional conditions. In the work reported here, the ignition and devolatilization characteristics of both a high-volatile bituminous coal and a Powder River Basin subbituminous coal were analyzed in detail through single-particle imaging at a gas temperature of 1700 K over a range of 12–36 vol % O2 in both N2 and CO2 diluent gases. The bituminous coal images show large, hot soot cloud radiation whose size and shape vary with oxygen concentration and, to a lesser extent, with the use of N2 versus CO2 diluent gas. Subbituminous coal images show cooler, smaller emission signals during devolatilization that have the same characteristic size as the coal particles introduced into the flow (nominally 100 μm). The measurements also demonstrate that the use of CO2 diluent retards the onset of ignition and increases the duration of devolatilization, once initiated. For a given diluent gas, a higher oxygen concentration yields shorter ignition delay and devolatilization times. The effect of CO2 on coal particle ignition is explained by its higher molar specific heat and its tendency to reduce the local radical pool. The effect of O2 on coal particle ignition results from its effect on the local mixture reactivity. CO2 decreases the rate of devolatilization because of the lower mass diffusivity of volatiles in CO2 mixtures, whereas higher O2 concentrations increase the mass flux of oxygen to the volatiles flame and thereby increase the rate of devolatilization.  相似文献   

14.
Devolatilization is an important process in pulverized coal combustion because it affects the ignition, volatile combustion, and subsequent char burning and ash formation. In this study, high-speed digital in-line holography is employed to visualize and quantify the particle and volatile evolution during pulverized coal combustion. China Shanxi bituminous coal particles sieved in the range of 105–154 µm are entrained into a flat flame burner through a central tube for the study. Time-resolved observations show the volatile ejection, accumulation, and detachment in the early stage of coal combustion. Three-dimensional imaging and automatic particle extraction algorithm allow for the size and velocity statistics of the particle and stringy volatile tail. The results demonstrate the smaller particle generation and coal particle swelling in the devolatilization. It is found that the coal particles and volatiles accelerate due to the thermal buoyancy and the volatiles move faster than the coal particles. On average, smaller particles move faster than the larger ones while some can move much slower possibly because of the fragmentation.  相似文献   

15.
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (μ-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process.Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at μ-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at μ-g than that at 1-g.The model predictions agreed well with the μ-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 μm at ambient temperature 1500 K and oxygen concentration 0.23.  相似文献   

16.
The ignition and combustion of coal particle groups are investigated numerically in a laminar flow reactor. The Flamelet Generated Manifold method is extended to account for the complex mixture of gases being released during devolatilization, which is calculated with a competing two-step model. A second mixture fraction is introduced to include the mixing with the second methane fuel stream. The interactions of the gas phase with particles are modeled within a fully coupled Euler-Lagrange framework. To investigate the influence of particle groups on ignition and combustion, successively increasing densities of particle streams have been analyzed. The ignition delay time is increased significantly by higher particle densities. This delay is validated successfully with the available measurements. Moreover, the shape of the volatile flame was found to be strongly influenced by the particle number density inside the flame. A transition from spherical flames around single particles to a conical flame around the particle cloud could be found in numerical results as well as in experiments. As the primary mechanism for the substantial ignition delay and the formation of the flame, the increased heat transfer from the gas-phase to the particle group, resulting in lower gas-phase temperatures, was identified.  相似文献   

17.
The ignition and combustion of coal particles are investigated numerically under conventional and oxy-fuel atmospheres. Devolatilization is computed using the chemical percolation devolatilization (CPD) model. The CPD model is coupled with a Lagrangian particle tracking method in the framework of a multiphysics, multiscale Navier–Stokes solver. Combustion in the gas phase is described using finite rate chemistry. The numerical results for ignition are compared with available experimental data and a remarkably good agreement is observed. The effect on flame ignition of the different phases characterizing the release of volatile gases is assessed. These different phases manifest themselves in two distinct peaks in the devolatilization rate and it is observed that ignition can occur during the first volatile release or on the onset of the second, depending on the particle size and gas temperature. It is found that an increase of ignition delay time in oxy-atmosphere compared to the air case is related to the depletion of radicals that react with the abundant carbon dioxide of the oxy-atmosphere, while the increased heat capacity of the mixture does not play a role.  相似文献   

18.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

19.
单只水平浓缩煤粉燃烧器在1MW燃烧试验台上的试验研究   总被引:13,自引:0,他引:13  
单只水平浓缩煤粉燃烧器在1MW燃烧试验台上的试验研究孙绍增,吴少华,李争起,杨明新,王新雷,陈力哲,庞丽君,邢春礼,朱彤,孙恩召,秦裕琨(哈尔滨工业大学动力工程系哈尔滨150001)关键词:水平浓淡燃烧,煤粉燃烧器,稳燃,低NO_x一、引言电力工业对?..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号