首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The thermal stability, Raman spectrum and upconversion properties of Tm3+/Yb3+ co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm3+/Yb3+ co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+ ions respectively,were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated.The intense blue upconversion luminescence of Tm3+/Yb3+ co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.  相似文献   

2.
A novel method of codoping the Er^3+, Yb^3+, and Ho^3+ ions in tellurite glasses is demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Three intense emission bands observed in Er^3+, Yb^3+, and Ho^3+ codoped tellurite glasses centred at 525, 547, and 657nm correspond to Er^3+: ^2H11/2 -4 ^4I15/2, Er^3+: ^4S3/2 →^4I15/2+Ho^3+: ^5S2(^5F4) → ^5Is, and Er^3+: ^4Sa/2 → ^4I15/2+Ho^3+: ^5F5 → ^5Is transitions, respectively. No visible upconversion quenching phenomenon is observed when three rare-earth ions are codoped together in tellurite glasses. In contrast, the upconversion intensity of red and green emissions in Er^3+, Yb^3+, and Ho^3+ codoped glasses is enhanced largely when compared with Er^3+ /Yb^3+-codoped glasses. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms are evaluated. The three emissions are based on two-photon absorption processes.  相似文献   

3.
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.  相似文献   

4.
Strong upconversion luminescence of Er3 /Yb3 -doped lead halide tellurite glass under 976nm excitation is demonstrated. Three emission bands centred at 525 nm, 545 nm, and 655 nm resulting from the transitionsfrom the excited states 2H11/2, 4S3/2, and 4F9/2 to the ground state 4I15/2, respectively, are observed evenat 60mW pumping power. The power dependent intensity and the upconversion mechanisms responsible forthe luminescence are evaluated and discussed. The obtained results might provide useful information for thedevelopments of upconversion lasers.  相似文献   

5.
We study the structural and infrared-to-visible upconversion fluorescence properties of Er^3 /yb^3 -codoped leadfree germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of F~aman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm,corresponding to the transitions ^2H11/2 → 4I15/2, ^4S3/2 → 4I15/2, and 4F9/2 → 4I15/2, respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.  相似文献   

6.
We investigate the upconversion luminescence of Er3^ and Tm^3 codoped tellurite glasses under both the 975 and 80Ohm excitations. By Tm^3 codoping, the Er^3 green emission corresponding to the (^4S3/2, 2H11/2) → 4I15/2 transitions was quenched, while the red emission corresponding to the ^4F9/2 → ^4I15/2 transition was selectively sensitized. The red emission has a maximum in the range where the ratio of Er^3 - to Tm^3 -content is about two and its fluorescence intensity becomes 1.5 and 5 times larger at the maximum than those in the absence of Tm^3 for 975 and 800 nm excitations, respectively. The results were explained considering the influence of energy transfers between these two active ions.  相似文献   

7.
Frequency upconversion fluorescence property of Er^3 -doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions ^2H11/2→4I15/2,^4S3/2→^4I15/2, and ^4F9/2→^4I15/2, respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at-805cm^-1. The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor AT(△T = Tx -Tg) is 187℃. Intense upconversion luminescence and good thermal stability indicate that Er^3 -doped oxychloride germanate glass is a promising upconversion laser material.  相似文献   

8.
Er^{3+}-doped lead chloride tellurite glasses were prepared using the conventional melting and quenching method. The absorption spectra were measured and the Judd-Ofelt analysis was performed. The spectroscopic parameters such as the intensity parameters, transition probabilities, radiative lifetimes, and branching ratios were obtained. Intense infrared emission and visible upconversion luminescence under 976 nm excitation were observed. For the 1.55μm emission, the full width at half maximum and the emission cross sections are more than 50 nm and 8×10^{- 20}cm^2, respectively. Three efficient visible luminescences centred at 525, 547, and 658nm are assigned to the transitions from the excited states {}^{2}H_{11/2}, {}^{4}S_{3/2}, and {}^{4}F_{9/2} to the ground state {}^{4}I_{15/2}, respectively. The upconversion mechanisms and the power-dependent intensities are also discussed and evaluated.  相似文献   

9.
Er^3 -doped strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Under 975 nm excitation, intense green and red emissions centred at 525, 546, and 657nm,corresponding to the transitions ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2, and ^4F9/2 → ^4I15/2, respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for 525 and 546nm emissions, and energy transfer upconversion for 657nm emission.  相似文献   

10.
The upconversion properties of Er^3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions ^4S3/2→^4I15/2, ^2H11/2→^4 I15/2 and ^4F9/2 →^4I15/2, respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.  相似文献   

11.
The photoluminescence of Eu^3 -doped yttrium oxide chloride embedded in nanoporous glass has been observed.In comparison with those in the powder phosphor,the emission lines of Eu^3 ions becom much broader and lueshift was observed in the lines due to ^5D0→^7F2 transitions and the Eu-O charge transfer excitation band.The ratio intensities of the ^5D0→^7F1 transitions to the ^5D0→^7F2 transitions of Eu^3 ion become higher and change at different excitation excitation wavelengths,such as 393nm and 254nm.The two excitation wavelengths belong to the 4f→4f transition of the Eu^3 ion and the Eu-O charge transfer,respectively,This material may be developed into a new luminescent glass.  相似文献   

12.
The upconversion fluorescence emission of Er3 -doped 60GeO2-2OPbO-2OPbF2 glass was experimentally investigated under the pump of 976-nm laser diode. The results reveal the existence of intense emission bands centred around 524, 545, and 657nm at room temperature. The green emission at 524 and 545nm is due to the 4S3/2 2 Hll/2→ 4I15/2 transition and the red emission of 657nm originates from the 4F9/2-→4I15/2 transition of Er3 . The quadratic dependence of the green and red emissions on excitation power indicates that a two-photonabsorption process occurs under the 976-nm excitation. The excited- state absorption from 4I ll/2 and the cross relaxation between two Er3 ions in the 4I ll/2 state contribute to the green emission. The red emission at 657nm is attributed to the excited-state absorption and cross relaxation processes in the 4I13/2 level as well as the 4S3/2 level nonradiative transition of Er3 .  相似文献   

13.
A novel Tm^3+/Yb^3+ triply-doped glass ceramics containing BaF2 nano-crystals are successfully prepared. Fluoride nanocrystals BaF2 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. The intense blue (476 nm), green (543 nm), and red (656 nm) emissions of the glass ceramics are simultaneously observed at room temperature under 980-am excitation, and the emission luminescence intensity increases significantly compared with the precursor glass, which is attributed to the low phonon energy of fluoride nanocrystals when rare-earth ions are incorporated into the precipitated BaF2 nanocrystals. Under 980-nm excitation at 400 mW, the international commission on illumination (CIE) chromaticity coordinate (X = 0.278, Y = 0.358) of the tridoped oxyfluoride glass ceramics' upconversion emissions is close to the standard white-light illumination (X = 0.333, Y= 0.333). The results indicate that Tm^3+/Yb^3+ triply doped glass ceramics can act as suitable materials for potential three-dimensional displays applications.  相似文献   

14.
The upconversion luminescence and dynamics in Er^3+ /Yb^3+ codoped nanocrystalline yttria (7-65 nm) are studied under 980-nm pulsed laser excitation, It is found that the red emission of ^4F9/2-^4I15/2 and the green emission of ^2H11/2/^4S3/2 in nanoparticles with lower concentration of Yb^3+ result from a two-photon excitation, In nanocrystals with higher Yb^3+ concentration, the red emissions from a two-photon excitation, while the green emissions from a three-photon excitation, The luminescence dynamics indicates that as the particle size decreases, both the rise and the decay time constants become shorter, As the size decreases to several nanometres, the rise process nearly disappears, suggesting that the upconversion luminescence originates mainly from self-excitation of Er^3+, instead of the energy transfer of Yb^3+→ Er^3+.  相似文献   

15.
A tellurite fibre of TeO_{2}-ZnO-La_{2}O_{3}-Li_{2}O glass codoped with 20000 ppm ytterbium and 5000 ppm erbium was fabricated by the suction casting and rod-in-tube technologies. The absorption spectrum of Er^{3+}/Yb^{3+} -codoped bulk glass has been measured. From the Judd-Ofelt intensity parameters, the spontaneous emission probability and radiative lifetime τ_{rad} of Er^{3+}:{}^{4}I_{13/2}→{}^{4}I_{15/2} transition for the bulk glass have been calculated. The emission fluorescence spectra and lifetimes around 1.5μm, and subsequent upconversion fluorescence in the range of 500-700nm were measured in fibres and compared with those in bulk glass. The changes in amplified spontaneous emission with fibre length and pumping power was also measured. It was found that the emission spectrum from erbium in fibres is almost twice as broad as the corresponding spectrum in bulk glass when pumped at 980nm.  相似文献   

16.
Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.  相似文献   

17.
Upconversion luminescence of Er3+/Yb3+-doped halide tellurite glass is investigated experimentally upon 976-nm excitation. Three intense emissions centered at 525, 545 and 655 nm owing to the transitions 2H11/2→4I15/2,4S3/2→4I15/2 and 4F9/2→4I15/2, respectively, are observed when pumping power is as low as 20 mW. The upconversion mechanisms and power dependent intensities are discussed. The high-populated 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.  相似文献   

18.
The effects of a Mg^2+ ion on the dopant occupancy and upconversion luminescence of a Ho^3+ ion in LiNbO3 crystal are reported. The birefringence gradient of the crystal is measured to investigate the optical homogeneity. The X-ray powder diffraction spectrum and the upconversion luminescence are used to investigate defect structure and spectroscopic properties of Mg,Ho:LiNbO3. Under 808-nm excitation, blue, red, and very intense yellow-green bands are observed. Based on the energy levels of Ho^3+ in LiNbO3, and the pump intensity dependence of the observed emission, an excitation scheme is presented. The upconversion emission spectra reveal an enhancement of upconversion intensity when the Mg^2+ ions are introduced into Ho:LiNbO3. The main upconversion mechanism is discussed in this work.  相似文献   

19.
李涛  张勤远  姜中宏 《中国物理》2007,16(4):1155-1158
We have investigated infrared-to-visible upconversion luminescence of Er^3+ in bismuth-lead-germanate glasses. The UV cutoff wavelength is shortened while its lifetime is increased almost linearly, with PbF2 substituting for PbO in the bismuth-lead germanate glasses. Three emissions centred at around 529, 545 and 657 nm are clearly observed, which are identified as originating from the ^2H11/2→^4 I15/2,^4S3/2→^4 I15/2 and ^4 F9/2 →^4 I15/2 transitions, respectively. It is noted that all the upconversion emission intensities increase with PbF2 concentration increasing. The ratio between the intensities of red and green emissions increases with the increasing of PbF2 content. Energy transfer processes and nonradiative phonon-assisted decays account for the populations of the ^2 H11/2,^4 S3/2 and ^4F 9/2 levels. The quadratic dependence of fluorescence on excitation laser power confirms a two-photon process to contribute to the upconversion emissions.  相似文献   

20.
Er^{3+}- and Er^{3+}/Yb^{3+}-doped lead germanate glasses that are suitable for use in fibre lasers and optical amplifiers as well as optical waveguide devices have been fabricated and characterized. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters were determined from the absorption band. Intense and broad 1.53μm infrared fluorescence and visible upconversion luminescence were observed under 976 nm diode laser excitation. For 1.53μm emission band, the full widths at half-maximum are 36, 37, 51 nm for GPE, GPYE and GPFE samples, respectively. For frequency upconversion emission, the intense bands centred at around 524, 545, 657nm are due to the {}^4S_{3/2}+{}^2H_{11/2}→{}^4I_{15/2} and {}^4F_{9/2}→{}^4I_{15/2} transitions of Er^{3+} ions. The quadratic dependence of the green and red emissions on excitation power indicates that the two-photon absorption process occurs under the 976nm excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号