首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study frustrated quantum systems from a quantum information perspective. Within this approach, we find that highly frustrated systems do not follow any general "area law" of block entanglement, while weakly frustrated ones have area laws similar to those of nonfrustrated systems away from criticality. To calculate the block entanglement in systems with degenerate ground states, typical in frustrated systems, we define a "cooling" procedure of the ground state manifold and propose a frustration degree and a method to quantify constructive and destructive interference effects of entanglement.  相似文献   

2.
We study entanglement in a valence-bond solid state, which describes the ground state of an Affleck-Kennedy-Lieb-Tasaki quantum spin chain, consisting of bulk spin-1's and two spin-1/2's at the ends. We characterize entanglement between various subsystems of the ground state by mostly calculating the entropy of one of the subsystems; when appropriate, we evaluate concurrences as well. We show that the reduced density matrix of a continuous block of bulk spins is independent of the size of the chain and the location of the block relative to the ends. Moreover, we show that the entanglement of the block with the rest of the sites approaches a constant value exponentially fast, as the size of the block increases. We also calculate the entanglement of (i) any two bulk spins with the rest, and (ii) the end spin-1/2's (together and separately) with the rest of the ground state.  相似文献   

3.
We revisit the question of the relation between entanglement, entropy, and area for harmonic lattice Hamiltonians corresponding to discrete versions of real free Klein-Gordon fields. For the ground state of the d-dimensional cubic harmonic lattice we establish a strict relationship between the surface area of a distinguished hypercube and the degree of entanglement between the hypercube and the rest of the lattice analytically, without resorting to numerical means. We outline extensions of these results to longer ranged interactions, finite temperatures, and for classical correlations in classical harmonic lattice systems. These findings further suggest that the tools of quantum information science may help in establishing results in quantum field theory that were previously less accessible.  相似文献   

4.
Knowledge of the entanglement properties of the wave functions commonly used to describe quantum many-particle systems can enhance our understanding of their correlation structure and provide new insights into quantum phase transitions that are observed experimentally or predicted theoretically. To illustrate this theme, we first examine the bipartite entanglement contained in the wave functions generated by microscopic many-body theory for the transverse Ising model, a system of Pauli spins on a lattice that exhibits an order-disorder magnetic quantum phase transition under variation of the coupling parameter. Results for the single-site entanglement and measures of two-site bipartite entanglement are obtained for optimal wave functions of Jastrow-Hartree type. Second, we address the nature of bipartite and tripartite entanglement of spins in the ground state of the noninteracting Fermi gas, through analysis of its two- and three-fermion reduced density matrices. The presence of genuine tripartite entanglement is established and characterized by implementation of suitable entanglement witnesses and stabilizer operators. We close with a broader discussion of the relationships between the entanglement properties of strongly interacting systems of identical quantum particles and the dynamical and statistical correlations entering their wave functions.  相似文献   

5.
The entanglement entropy of a distinguished region of a quantum many-body system reflects the entanglement in its pure ground state. Here we establish scaling laws for this entanglement in critical quasifree fermionic and bosonic lattice systems, without resorting to numerical means. We consider the setting of D-dimensional half-spaces which allows us to exploit a connection to the one-dimensional case. Intriguingly, we find a difference in the scaling properties depending on whether the system is bosonic-where an area law is proven to hold-or fermionic where we determine a logarithmic correction to the area law, which depends on the topology of the Fermi surface. We find Lifshitz quantum phase transitions accompanied with a nonanalyticity in the prefactor of the leading order term.  相似文献   

6.
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.  相似文献   

7.
祝敬敏 《中国物理快报》2008,25(10):3574-3577
We present a new general and much simpler scheme to construct various quantum phase transitions (Q, PTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) OPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of Q, PT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous.  相似文献   

8.
We prove the existence of gapped quantum Hamiltonians whose ground states exhibit an infinite entanglement length, as opposed to their finite correlation length. Using the concept of entanglement swapping, the localizable entanglement is calculated exactly for valence bond and finitely correlated states, and the existence of the so-called string-order parameter is discussed. We also report on evidence that the ground state of an antiferromagnetic chain can be used as a perfect quantum channel if local measurements on the individual spins can be implemented.  相似文献   

9.
We study the asymptotic scaling of the entanglement of a block of spins for the ground state of the one-dimensional quantum Ising model with transverse field. When the field is sufficiently strong, the entanglement grows at most logarithmically in the number of spins. The proof utilises a transformation to a model of classical probability called the continuum random-cluster model, and is based on a property of the latter model termed ratio weak-mixing. In an intermediate result, we establish an exponentially decaying bound on the operator norm of differences of the reduced density operator. Of special interest is the mathematical rigour of this work, and the fact that the proof applies equally to a large class of disordered interactions.  相似文献   

10.
11.
We discuss a general formalism based on the mean field plus random phase approximation (RPA) for the evaluation of entanglement measures in the ground state of spin systems. The method provides a tractable scheme for determining the entanglement entropy as well as the negativity of finite subsystems, which becomes analytic in the case of systems with translational invariance, in one or D dimensions. The approach improves as the spin increases, and also as the interaction range or connectivity increases. Illustrative results for different types of entanglement entropies (single site, block and comb) in the ground state of a small spin lattice with ferromagnetic type XY couplings in a transverse field are shown and compared with the exact numerical result. Effects arising from symmetry breaking at the mean field level are also discussed.  相似文献   

12.
We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.  相似文献   

13.
14.
We present a perturbative method to compute the ground state entanglement entropy for interacting systems. We apply it to a collective model of mutually interacting spins in a magnetic field. At the quantum critical point, the entanglement entropy scales logarithmically with the subsystem size, the system size, and the anisotropy parameter. We determine the corresponding scaling prefactors and evaluate the leading finite-size correction to the entropy. Our analytical predictions are in perfect agreement with numerical results.  相似文献   

15.
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states(TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.  相似文献   

16.
We introduce a computable estimator of block entanglement entropy for many-body spin systems admitting total singlet ground states. Building on a simple geometrical interpretation of entanglement entropy of the so-called valence bond states, this estimator is defined as the average number of common singlets to two subsystems of spins. We show that our estimator possesses the characteristic scaling properties of the block entanglement entropy in critical and noncritical one-dimensional Heisenberg systems. We invoke this new measure to examine entanglement scaling in the two-dimensional Heisenberg model on a square lattice revealing an "area law" for the gapped phase and a logarithmic correction to this law in the gapless phase.  相似文献   

17.
We present an introduction to the concept of localizable entanglement (LE) with special focus on its numerical computation. LE is an entanglement measure for multipartite systems, which leads naturally to notions like entanglement length and entanglement fluctuations. After briefly reviewing basic properties of LE we present a scheme for the numerical calculation of LE. It is based on the matrix-product state representation of many-body quantum states and the Monte Carlo method. It can be applied both to pure and mixed states. Using this method we calculate the LE of ground and thermal states for various spin systems. PACS 03.67.Mn; 03.65.Ud; 75.10.Pq; 73.43.Nq  相似文献   

18.
We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local Hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions violating this entanglement-boundary law. Implications for the classical simulatability are outlined.  相似文献   

19.
We propose a symmetric version of the multiscale entanglement renormalization ansatz in two spatial dimensions (2D) and use this ansatz to find an unknown ground state of a 2D quantum system. Results in the simple 2D quantum Ising model on the 8x8 square lattice are found to be very accurate even with the smallest nontrivial truncation parameter.  相似文献   

20.
We demonstrate that in a triangular configuration of an optical lattice of two atomic species a variety of novel spin-1/2 Hamiltonians can be generated. They include effective three-spin interactions resulting from the possibility of atoms tunneling along two different paths. This motivates the study of ground state properties of various three-spin Hamiltonians in terms of their two-point and n-point correlations as well as the localizable entanglement. We present a Hamiltonian with a finite energy gap above its unique ground state for which the localizable entanglement length diverges for a wide interval of applied external fields, while at the same time the classical correlation length remains finite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号