首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
It is widely accepted that wind energy is clean and renewable. However, icing on the blade surfaces of wind turbines is a serious problem in cold regions, which greatly affects its performance. Therefore, it is important to prevent ice accumulation on the surface of wind turbine blade and remove it whenever necessary. In this paper, a new non-thermal method–ultrasonic de-icing for wind turbine blade is proposed. Firstly, baced on the theory of ultrasonic de-icing, the harmonic analysis of the structure of the composite plate-ice layered system is investigated using the finite element method. The simulation results showed that ultrasonic de-icing method is feasible for wind turbine blade de-icing purposes. Secondly, the de-icing experiment of wind turbine blades using piezoelectric actuators is carried out in the freezer at a temperature of −15 °C, results showed that the ice layer can be debonded from the surface of wind turbine blade by the commonly used piezoelectric transducers made by PZT-5. The optimal frequency of ultrasonic de-icing of wind turbine blade is also given; finally, the installation way of ultrasonic transducers on the inner surface of wind turbine blade is given.  相似文献   

2.
杨国良  李惠光 《物理学报》2009,58(11):7552-7557
以直驱式永磁同步风力发电机(D-PMSG)作为研究对象,推导了其数学模型,论证了在某些参数及工作条件下会出现混沌运动,提出了D-PMSG混沌运动的滑模变结构控制方法,通过控制桨距角β来实现.针对风力机系统的非线性,参数变化等特性,根据风力机机理,基于一定假设得到风力机在某一工况点线性模型,进而提出滑模变结构控制方案,充分利用变结构控制对被控对象的模型误差、对象参数的变化以及外部干扰有极佳的不敏感性的优点.仿真结果表明所提出控制方案的有效性,控制响应速度快,控制鲁棒性好,能适用于系统具有不确定 关键词: 风力发电 直驱式永磁同步风力发电机组(D-PMSG) 混沌控制 滑模变结构控制  相似文献   

3.
Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model. Sub structuring has the ability to combine numerical results along with the experimental results. Combination of substructuring and tactile response is applied in this study. Mode shapes of the system are analyzed and results obtained are correlated within this study to provide better optimization of the results. Wind turbine excited with wind energy depends on wind speed. Torsional vibration has a significant role in determining dynamic properties. Torsional vibration is caused as a result of the rotation of the turbine blade and depends on wind speed. The study gives importance to investigating the ability to simulate the numerical method and tactile response to predict and improve dynamic properties.  相似文献   

4.
崔双喜  王维庆 《应用声学》2015,23(7):2385-2388
针对具有很强非线性的风力机桨叶系统,利用动量矩定理,建立桨叶动力学数学模型,采用自适应反演控制,设计独立变桨鲁棒自适应桨距角跟踪控制器。该控制方法采用在实际控制量中,引入自适应鲁棒项,克服和消除不确定性对桨叶系统的影响。利用Matlab/Simulink软件,搭建风力机仿真平台,仿真结果验证了所提出控制方法的可行性和有效性。在桨叶系统参数不确定、受到未知不平衡载荷的情况下,经过自适应过程,设计的控制器较好地实现了风力机桨叶桨距角独立、快速跟踪各自期望的桨距角。  相似文献   

5.
升力型垂直轴风力机翼型的选择   总被引:1,自引:0,他引:1  
目前升力型垂直轴风力机采用的翼型多种多样,为了研究不同翼型对升力型垂直轴风力机风能利用率的影响,本文采用计算流体力学软件和滑移网格技术对升力型直叶片垂直轴风力机进行二维流场的数值模拟。结果表明,对于升力型垂直轴风力机,当选择NACA0018翼型可以达到最高的风能利用率。  相似文献   

6.
The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.  相似文献   

7.
In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today?s turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler–Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.  相似文献   

8.
Wind turbine blade failure is the most prominent and common type of damage occurring in operating wind turbine systems. Conventional nondestructive testing systems are not available for in situ wind turbine blades. We propose a portable long distance ultrasonic propagation imaging (LUPI) system that uses a laser beam targeting and scanning system to excite, from a long distance, acoustic emission sensors installed in the blade. An examination of the beam collimation effect using geometric parameters of a commercial 2 MW wind turbine provided Lamb wave amplitude increases of 41.5 and 23.1 dB at a distance of 40 m for symmetrical and asymmetrical modes, respectively, in a 2 mm-thick stainless steel plate. With this improvement in signal-to-noise ratio, a feasibility study of damage detection was conducted with a 5 mm-thick composite leading edge specimen. To develop a reliable damage evaluation system, the excitation/sensing technology and the associated damage visualization algorithm are equally important. Hence, our results provide a new platform based on anomalous wave propagation imaging (AWPI) methods with adjacent wave subtraction, reference wave subtraction, reference image subtraction, and the variable time window amplitude mapping method. The advantages and disadvantages of AWPI algorithms are reported in terms of reference data requirements, signal-to-noise ratios, and damage evaluation accuracy. The compactness and portability of the proposed UPI system are also important for in-field applications at wind farms.  相似文献   

9.
Fault diagnosis of wind turbines is of great importance to reduce operating and maintenance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on single faults, and the methods for combined faults usually depend on inefficient manual analysis. Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT) machine learning based fault diagnosis method for combined fault of wind turbines, which can identify the fault type of wind turbines simply and efficiently without human experience and with low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine (SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models, the proposed model has superiority for this classification problem.  相似文献   

10.
The control of wind turbine blade pitch systems by Lidar assisted wind speed prediction has been proposed to increase the electric power generation and reduce the mechanical fatigue load on wind turbines. However, the sticking point of such Lidar systems is the price. Hence, our objective is to develop a more cost efficient Lidar system to support the pitch control of horizontal axis wind turbines and therefore to reduce the material requirement, lower the operation and maintenance costs and decrease the cost of wind energy in the long term. Compared to the state of the art Lidar systems, a laser with a shorter coherence length and a corresponding fiber delay line is introduced for reducing the costs. In this paper we present the experimental evaluation of different sending and receiving optics designs for such a system from a free space laboratory setup.  相似文献   

11.
5kW遮蔽-增速升力型垂直轴风力机优化设计   总被引:1,自引:0,他引:1  
本文详细介绍了5 kW遮蔽-增速垂直轴风力机的结构特点及主要参数。利用正交优化设计方法,采用计算流体力学软件,针对5 kW风力机,在叶片个数和遮蔽板安装位置半径一定的情况下,对翼型弦长、叶片转动扫掠面的半径、风轮旋转速度、遮蔽-增速板个数、遮蔽-增速板与叶片间的气动间隙以及遮蔽-增速板的安装角六个参数进行优化计算,找出一组最佳设计参数,进而设计出5 kW遮蔽-增速升力型垂直轴风力机,并对设计出的有遮蔽板与无遮蔽板两类型风力机的变工况特性进行比较分析。  相似文献   

12.
张为  韩延琴  张鑫 《应用声学》2017,25(4):51-51
搭建小型风机叶片振动检测实验平台,采集风机叶片振动响应数据,利用自互功率谱法辨别叶片损伤前后的模态参数,通过实验数据对比风机叶片损伤前后固有频率的变化,当风机叶片发生损伤时,其各阶固有频率会下降,且随着损伤程度的增加,各阶固有频率的下降幅度越大,并利用轴向振型差法对叶片损伤进行了定位,在实验室条件下完成了风机叶片结构损伤的识别。  相似文献   

13.

Abstract  

In the present study, an experimental study was conducted to characterize the formation and the evolution of the helical tip vortices and turbulent flow structures in the wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind. A high-resolution particle image velocimetry system was used to make detailed flow field measurements to quantify the time evolution of the helical tip vortices in relation to the position of the rotating turbine blades in order to elucidate the underlying physics associated with turbine power generation and fatigue loads acting on the wind turbines.  相似文献   

14.
风力发电机自循环蒸发内冷系统稳定性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王海峰  李旺  顾国彪  沈俊  滕启治 《物理学报》2016,65(3):30501-030501
自循环蒸发内冷系统的冷却效率高,可以实现无泵自循环,运行安全可靠,基本免维护,因此适合在大型风力发电机中使用.蒸发内冷系统的稳定性对风力发电机的安全运行十分重要,本文基于非线性分岔理论及其数值延拓法,对自循环蒸发内冷系统应用于风力发电机的的静态稳定性进行了深入研究.获得了系统静态分岔解图,分析了系统演化特性,同时分析了系统分岔现象的参数效应.搭建了实验平台,通过实验观测到了自循环蒸发内冷系统的静态分岔现象,验证了理论计算的正确性.  相似文献   

15.
针对煤矿大型风机设备主轴磨损而影响风机工作效率的问题,在对大型风机设备磨损故障的生成原因分析后,根据系统需求设计实现了系统的硬件模块和软件模块,通过传感器电路对大型风机设备的输入输出功率、出风量、主轴转速等参数进行采集,系统软件在对数据进行综合分析后将检测结果显示在液晶屏上,实时输出大型风机设备的运行状态以及主轴磨损状况,从而保证了风机的运行效率,避免设备故障的发生。通过系统测试表明本系统可以实时输出风机设备的主轴磨损程度监测结果,且风机设备的风量、风压、功率和效率等主要参数的测量精度高。  相似文献   

16.
Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude vibrations induced by the turbulence may significantly shorten the fatigue life of the blade. This paper investigates the performance of roller dampers for mitigation of edgewise vibrations in rotating wind turbine blades. Normally, the centrifugal acceleration of the rotating blade can reach to a magnitude of 7–8g, which makes it possible to use this kind of damper with a relatively small mass ratio for suppressing edgewise vibrations effectively. The parameters of the damper to be optimized are the mass ratio, the frequency ratio, the coefficient of rolling friction and the position of the damper in the blade. The optimization of these parameters has been carried out on a reduced 2-DOF nonlinear model of the rotating wind turbine blade equipped with a roller damper in terms of a ball or a cylinder, ignoring the coupling with other degrees of freedom of the wind turbine. The edgewise modal loading on the blade has been calculated from a more sophisticated 13-DOF aeroelastic wind turbine model with due consideration to the indicated couplings, the turbulence and the aerodynamic damping. Various turbulence intensities and mean wind speeds have been considered to evaluate the effectiveness of the roller damper in reducing edgewise vibrations when the working conditions of the wind turbine are changed. Further, the optimized roller damper is incorporated into the 13-DOF wind turbine model to verify the application of the decoupled optimization. The results indicate that the proposed damper can effectively improve the structural response of wind turbine blades.  相似文献   

17.
后掠风力机叶片气动性能数值模拟   总被引:1,自引:0,他引:1  
采用商用软件FINE~(TM)/Turbo,以2.5MW风力机DF90风轮叶片为原型,在确认数值方法的基础上,将中叶展以上做后掠变型,进行三维定常数值模拟研究,讨论了后掠叶型对叶片气动特性的影响,并提出了一种定义后掠叶片静压系数的方法。  相似文献   

18.
本文通过数值模拟的方法,研究了三种开缝方案对风力机静态失速特性的影响,模拟结果表明,开缝式风力机静态失速特性较为平坦,风力机开缝对静态失速进行控制的方法是可行的,由下风面到上风面开缝的方案在多冲角工况下有较好的静态失速特性.开缝结构的吸气口具有堵塞效应,排气口的排气会明显干涉来流的流动,因此开缝方向和开缝口处的形状对开缝效果的影响显著.  相似文献   

19.
风力机叶片21%相对厚度翼型粗糙敏感性研究   总被引:4,自引:0,他引:4  
基于变速变桨水平轴风力机,依据动量叶素理论和风力机实例,分析得出了叶片外侧翼型(包括21%相对厚度翼型)在低于额定风速变速运行阶段的粗糙敏感性评价指标为升力系数和升阻比的下降率;提出了根据升、阻力系数对输出功率的作用大小来确定两粗糙敏感性评价指标权重系数的方法,并用实例演示了21%相对厚度翼型粗糙敏感性评判基准的获得;另外,通过正交设计、XFOIL软件几何造型与气动计算和方差分析得出了翼型各几何参数在不同雷诺数下对粗糙敏感性不同评价指标的影响程度和最优组合是不一样的。本文结论可为不同风况下风力机翼型的设计和粗糙敏感性评价提供参考。  相似文献   

20.
以欠功率阶段的最大风能追踪为研究重点,对风力机捕获风能的过程进行理论分析,将蚁群算法自整定PID应用于最大风能追踪控制,设计了蚁群算法自整定PID控制器,并对其进行相应的仿真分析。仿真结果表明,与传统的PID控制策略相比,该控制策略使控制系统具有良好的动态响应能力,提高了控制精度、风能利用率、输出功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号