首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider moving fronts and stationary “bumps” in networks of non-locally coupled phase oscillators. Fronts connect regions of high local synchrony with regions of complete asynchrony, while bumps consist of spatially-localised regions of partially-synchronous oscillators surrounded by complete asynchrony. Using the Ott-Antonsen ansatz we derive non-local differential equations which describe the network dynamics in the continuum limit. Front and bump solutions of these equations are studied by either “freezing” them in a travelling coordinate frame or analysing them as homoclinic or heteroclinic orbits. Numerical continuation is used to determine parameter regions in which such solutions exist and are stable.  相似文献   

2.
The entrainment transition of coupled random frequency oscillators is revisited. The Kuramoto model (global coupling) is shown to exhibit unusual sample-dependent finite-size effects leading to a correlation size exponent nu=5/2. Simulations of locally coupled oscillators in d dimensions reveal two types of frequency entrainment: mean-field behavior at d>4 and aggregation of compact synchronized domains in three and four dimensions. In the latter case, scaling arguments yield a correlation length exponent nu=2/(d-2), in good agreement with numerical results.  相似文献   

3.
We study the long-term average frequency as a function of the natural frequency for Kuramoto oscillators with periodic coefficients. Unlike the case for more general periodically forced oscillators, this function is never a "devil's staircase"; it may have plateaus at integer multiples of the forcing frequency, but we prove it is strictly increasing between these plateaus. The proof uses the fact that the flow maps for Kuramoto oscillators extend to M?bius transformations on the complex plane, and that M?bius transformations have particularly simple dynamics that rule out p∶q mode locking except in the case of fixed points (q=1). We also give a criterion for the degeneration of an integer plateau to a single point and use it to explain the absence of plateaus at even multiples of the collective frequency for a Kuramoto system with a bimodal frequency distribution.  相似文献   

4.
We consider the dynamics of locally coupled calcium oscillation systems, each cell is subjected to extracellular contaminated signal, which contains common sub-threshold signal and independent Gaussian noise. It is found that intermediate noise can enhance synchronized oscillations of calcium ions, where the frequency of noise-induced oscillations is matched with the one of sub-threshold external signal. We show that synchronization is enhanced as a result of the entrainment of external signal. Furthermore, the effect of coupling strength is considered. We find above-mentioned phenomenon exists only when coupling strength is very small. Our findings may exhibit that noise can enhance the detection of feeble external signal through the mechanism of synchronization of intercellular calcium ions.  相似文献   

5.
In this work, we investigate the amplitude death in coupled system with small number of nonlinear oscillators. We show how the transitions to the partial and the complete amplitude deathes happen. We also show that the partial amplitude death can be found in globally coupled oscillators either.  相似文献   

6.
Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled identical dynamical units, have been identified in various systems and generalized to coupled nonidentical oscillators. It has been shown that strong heterogeneity in the frequencies of nonidentical oscillators might be harmful to chimera states. In this work, we consider a ring of nonlocally coupled bicomponent phase oscillators in which two types of oscillators are randomly distributed along the ring: some oscillators with natural frequency ω1 and others with ω2 . In this model, the heterogeneity in frequency is measured by frequency mismatch |ω1ω2| between the oscillators in these two subpopulations. We report that the nonlocally coupled bicomponent phase oscillators allow for chimera states no matter how large the frequency mismatch is. The bicomponent oscillators are composed of two chimera states, one supported by oscillators with natural frequency ω1 and the other by oscillators with natural frequency ω2. The two chimera states in two subpopulations are synchronized at weak frequency mismatch, in which the coherent oscillators in them share similar mean phase velocity, and are desynchronized at large frequency mismatch, in which the coherent oscillators in different subpopulations have distinct mean phase velocities. The synchronization–desynchronization transition between chimera states in these two subpopulations is observed with the increase in the frequency mismatch. The observed phenomena are theoretically analyzed by passing to the continuum limit and using the Ott-Antonsen approach.  相似文献   

7.
We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein \(p\) -distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous \(L^1\) -contraction properties of the Kuramoto phase model.  相似文献   

8.
We study how a decrease of the coupling strength causes a desynchronization in the Kuramoto model of N globally coupled phase oscillators. We show that, if the natural frequencies are distributed uniformly or close to that, the synchronized state can robustly split into any number of phase clusters with different average frequencies, even culminating in complete desynchronization. In the simplest case of N=3 phase oscillators, the course of the splitting is controlled by a Cherry flow. The general N-dimensional desynchronization mechanism is numerically illustrated for N=5.  相似文献   

9.
We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based on the Watanabe-Strogatz ansatz allows us to describe the self-organized bunch states in any finite ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.  相似文献   

10.
We investigate the synchronous dynamics of Kuramoto oscillators and van der Pol oscillators on Watts-Strogatz type small-world networks. The order parameters to characterize macroscopic synchronization are calculated by numerical integration. We focus on the difference between frequency synchronization and phase synchronization. In both oscillator systems, the critical coupling strength of the phase order is larger than that of the frequency order for the small-world networks. The critical coupling strength for the phase and frequency synchronization diverges as the network structure approaches the regular one. For the Kuramoto oscillators, the behavior can be described by a power-law function and the exponents are obtained for the two synchronizations. The separation of the critical point between the phase and frequency synchronizations is found only for small-world networks in the theoretical models studied.  相似文献   

11.
The synchronization transition of correlated ensembles of coupled Kuramoto oscillators on sparse random networks is investigated. Extensive numerical simulations show that correlations between the native frequencies of adjacent oscillators on the network systematically shift the critical point as well as the critical exponents characterizing the transition. Negative correlations imply an onset of synchronization for smaller coupling, whereas positive correlations shift the critical coupling towards larger interaction strengths. For negatively correlated oscillators the transition still exhibits critical behaviour similar to that of the all-to-all coupled Kuramoto system, while positive correlations change the universality class of the transition depending on the correlation strength. Crucially, the paper demonstrates that the synchronization behaviour is not only determined by the coupling architecture, but also strongly influenced by the oscillator placement on the coupling network.  相似文献   

12.
Complete synchronization of Kuramoto oscillators with finite inertia   总被引:1,自引:0,他引:1  
We present an approach based on Gronwall’s inequalities for the asymptotic complete phase-frequency synchronization of Kuramoto oscillators with finite inertia. For given finite inertia and coupling strength, we present admissible classes of initial configurations and natural frequency distributions, which lead to the complete phase-frequency synchronization asymptotically. For this, we explicitly identify invariant regions for the Kuramoto flow, and derive second-order Gronwall’s inequalities for the evolution of phase and frequency diameters. Our detailed time-decay estimates for phase and frequency diameters are independent of the number of oscillators. We also compare our analytical results with numerical simulations.  相似文献   

13.
黄霞  徐灿  孙玉庭  高健  郑志刚 《物理学报》2015,64(17):170504-170504
本文讨论了一维闭合环上Kuramoto相振子在非对称耦合作用下同步区域出现的多定态现象. 研究发现在振子数N≤3情形下系统不会出现多态现象, 而N≥4多振子系统则呈现规律的多同步定态. 我们进一步对耦合振子系统中出现的多定态规律及定态稳定性进行了理论分析, 得到了定态渐近稳定解. 数值模拟多体系统发现同步区特征和理论描述相一致. 研究结果显示在绝热条件下随着耦合强度的减小, 系统从不同分支的同步态出发最终会回到同一非同步态. 这说明, 耦合振子系统在非同步区由于运动的遍历性而只具有单一的非同步态, 在发生同步时由于遍历性破缺会产生多个同步定态的共存现象.  相似文献   

14.
Journal of Statistical Physics - In the context of the Kuramoto model of coupled oscillators with distributed natural frequencies interacting through a time-delayed mean-field, we derive as a...  相似文献   

15.
A numerical study of an adaptive network of coupled oscillators (Kuramoto oscillators) is performed. The problem of studying phase synchronization in networks by considering wavelet spectra of the integral signal and the evolution of the phase difference in clusters of the adaptive network is examined. The process behind the formation of phase clusters is analyzed using integral characteristics.  相似文献   

16.
Radiophysics and Quantum Electronics - We consider the dynamics of the Kuramoto ensemble oscillators not included in a common synchronized cluster, where the mean field is subject to fluctuations....  相似文献   

17.
We study a variety of mixed synchronous/incoherent (“chimera”) states in several heterogeneous networks of coupled phase oscillators. For each network, the recently-discovered Ott-Antonsen ansatz is used to reduce the number of variables in the partial differential equation (PDE) governing the evolution of the probability density function by one, resulting in a time-evolution PDE for a variable with as many spatial dimensions as the network. Bifurcation analysis is performed on the steady states of these PDEs. The results emphasise the commonality of the dynamics of the different networks, and provide stability information that was previously inferred.  相似文献   

18.
We study the emergence of collective synchronization in large directed networks of heterogeneous oscillators by generalizing the classical Kuramoto model of globally coupled phase oscillators to more realistic networks. We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networks. We also consider the case of networks with mixed positive-negative coupling strengths. We compare our theory with numerical simulations and find good agreement.  相似文献   

19.
Journal of Statistical Physics - The Kuramoto model is an important model for studying the onset of phase-locking in an ensemble of nonlinearly coupled phase oscillators. Each oscillator has a...  相似文献   

20.
The study of one-dimensional particle networks of Classical Mechanics, through Hamiltonian models, has taught us a lot about oscillations of particles coupled to each other by nearest neighbor (short range) interactions. Recently, however, a careful analysis of the role of long range interactions (LRI) has shown that several widely accepted notions concerning chaos and the approach to thermal equilibrium need to be modified, since LRI strongly affects the statistics of certain very interesting, long lasting metastable states. On the other hand, when LRI (in the form of non-local or all-to-all coupling) was introduced in systems of biological oscillators, Kuramoto’s theory of synchronization was developed and soon thereafter researchers studied amplitude and phase oscillations in networks of FitzHugh Nagumo and Hindmarsh Rose (HR) neuron models. In these models certain fascinating phenomena called chimera states were discovered where populations of synchronous and asynchronous oscillators are seen to coexist in the same system. Currently, their synchronization properties are being widely investigated in HR mathematical models as well as realistic neural networks, similar to what one finds in simple living organisms like the C.elegans worm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号