首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The paper investigates synchronization in unidirectionally coupled dynamical systems wherein the influence of drive on response is cumulative: coupling signals are integrated over a time interval τ. A major consequence of integrative coupling is that the onset of the generalized and phase synchronization occurs at higher coupling compared to the instantaneous (τ?=?0) case. The critical coupling strength at which synchronization sets in is found to increase with τ. The systems explored are the chaotic Rössler and limit cycle (the Landau–Stuart model) oscillators. For coupled Rössler oscillators the region of generalized synchrony in the phase space is intercepted by an asynchronous region which corresponds to anomalous generalized synchronization.  相似文献   

2.
Comparison of two tunnel-diode oscillators is performed, one of them having a solenoid pick-up coil, while another one has a single-layer flat-geometry coil. Oscillators operate in the frequency ranges, respectively, 6–25 MHz and 8–24 MHz and the coils had approximately equal inductances. These oscillators have been activated both without and with an external capacitance C 0 in their resonant circuit, i.e., the studied oscillators could be activated also with their internal (own) capacitances C c . It was succeeded to obtain more stable oscillations in case of flat coils. The analysis of data indicates that this fact is a consequence of a relatively high value of the own capacitance C c of the flat coils as compared to their parasitic capacitance C par with respect to the environment. This causes the advantages of flat-coil based oscillators. Also the inductance and the quantity C c + C par have been determined for both coils from the data of measurements.  相似文献   

3.
β-cells in the pancreas can be described by a model of coupled biological oscillators with communication links, which can synchronize their electrical activities, giving rise to a square-wave bursting-like insulin release. In fact, β-cells play a vital role in analyzing and characterizing diabetes conditions. This research work studies the synchronization between two fractional-order pancreatic β-cells. Numerically, the fractional-order model of the pancreatic β-cell is analyzed using an algorithm derived from the Grünwald–Letnikov scheme. It is found that, by modifying only the fractional-order while preserving the system parameter values, different types of bursting activities can be observed. Then, synchronization in the coupled fractional-order pancreatic β-cells is studied in detail by considering different patterns of the bursting activities. Simulation results demonstrate that a complete synchronization is effectively attained by choosing a proper value for the control gain.  相似文献   

4.
We study the asymptotic behavior of a finite network of oscillators (harmonic or anharmonic) coupled to a number of deterministic Lagrangian thermostats of finite energy. In particular, we consider a chain of oscillators interacting with two thermostats situated at the boundary of the chain. Under appropriate assumptions, we prove that the vector (p, q) of moments and coordinates of the oscillators in the network satisfies (p, q)(t) → (0, q c ) as t → ∞, where q c is a critical point of some effective potential, so that the oscillators just stop. Moreover, we argue that the energy transport in the system stops as well without reaching thermal equilibrium. This result is in contrast to the situation when the energies of the thermostats are infinite, studied for a similar system in [14] and subsequent works, where the convergence to a nontrivial limiting regime was established.The proof is based on a method developed in [22], where it was observed that the thermostats produce some effective dissipation despite the Lagrangian nature of the system.  相似文献   

5.
We consider neutrino oscillations as a nonstationary phenomenon based on the Schrödinger evolution equation and mixed neutrino states with definite flavor. We demonstrate that for such states, invariance under translations in time does not take place. We show that the time-energy uncertainty relation plays a crucial role in neutrino oscillations. We compare neutrino oscillations with K 0 ? -K 0, B d 0 ? B d 0 , and other oscillations.  相似文献   

6.
In this paper, we numerically study how time delay induces multiple coherence resonance (MCR) and synchronization transitions (ST) in adaptive Hodgkin-Huxley neuronal networks with spike-timing dependent plasticity (STDP). It is found that MCR induced by time delay STDP can be either enhanced or suppressed as the adjusting rate Ap of STDP changes, and ST by time delay varies with the increase of Ap, and there is optimal Ap by which the ST becomes strongest. It is also found that there are optimal network randomness and network size by which ST by time delay becomes strongest, and when Ap increases, the optimal network randomness and optimal network size increase and related ST is enhanced. These results show that STDP can either enhance or suppress MCR and optimal STDP can enhance ST induced by time delay in the adaptive neuronal networks. These findings provide a new insight into STDP’s role for the information processing and transmission in neural systems.  相似文献   

7.
The obtained periodic magnetic-field dependences I c+(Φ/Φ0) and I c?(Φ/Φ0) of the critical current measured in opposite directions on asymmetric superconducting aluminum rings has made it possible to explain previously observed quantum oscillations of dc voltage as a result of alternating current rectification. It was found that a higher rectification efficiency of both single rings and ring systems is caused by hysteresis of the current-voltage characteristics. The asymmetry of current-voltage characteristics providing the rectification effect is due to the relative shifts of the magnetic dependences I c?(Φ/Φ0) = I c+(Φ/Φ0 + Δ?) of the critical current measured in opposite directions. This shift means that the position of I c+(Φ/Φ0) and I c?(Φ/Φ0) minima does not correspond to n + 0.5 magnetic flux Φ quanta, which is in direct contradiction to measured Little-Parks resistance oscillations. Despite this contradiction, the amplitude I c, an(Φ/Φ0) = I c+(Φ/Φ0) ? I c?(Φ/Φ0) of critical current anisotropy oscillations and its variations with temperature correspond to the expected amplitude of persistent current oscillations and its variations with temperature.  相似文献   

8.
In cavity quantum electrodynamics, it is hard to enhance the coupling strength between quantum dot (QD) and cavity, owing to the limited choice of QDs and the positional uncertainty brought by the inhomogeneous cavity fields. In this paper, we randomly distribute N oscillators with oscillating strength G = G 0 into a cavity filled with a zero-index metamaterial (ZIM). Because of the enhanced uniform fields, each oscillator couples to the field maximum and the N oscillators are equivalent to one oscillator with effective N G 0. This provides a way to enhance the coupling strength just by adding the number of QDs. Both simulation and experiment demonstrate the adjustable coupling strength in ZIM-filled cavities.  相似文献   

9.
By elementary reasoning one would expect an activation energyW?2W k for the Bordoni peak.W k is the kink energy. This assumption fits with experimental evidence. It is pointed out that in the Donth theory for the Bordoni peak, the radiation loss from the dislocation oscillators is overestimated and that a recalculation of the Donth theory will probably yield an activation energyW? 2W k   相似文献   

10.
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b(a) = b_0 a + b_e(1-a), where at the earlytime the coupling is given by a constant b_e and today the coupling is described by another constant b_0. We explore six specific models with(i) Q = b(a)H_0ρ_0,(ii) Q = b(a)H_0ρ_(de),(iii) Q = b(a)H_0ρ_c,(iv) Q = b(a)Hρ_0,(v) Q = b(a)Hρ_(de), and(vi) Q = b(a)Hρ_c.The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements,and the Hubble constant direct measurement. We find that, for all the models, we have b_0 0 and b_e 0 at around the 1σ level,and b_0 and b_e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.  相似文献   

11.
The average optical reflectivity of bismuth as a function of time t after irradiation by a short laser pulse has been calculated. The amplitude A of photoinduced oscillations in the average optical reflectivity is shown to have extrema under certain conditions. The time τj (j is a natural number) at which the amplitude A reaches the jth extremum has been calculated. The calculated dependences of the times τ1 and τ2 at which, respectively, the first and second extrema (the first minimum and the first maximum) of the amplitude A are reached on the maximum laser pulse energy density Q are consistent with the experimental data from [8].  相似文献   

12.
Nonlinear magnetotransport in a two-dimensional electron gas in one-dimensional lateral lattices fabricated from a selectively doped GaAs/AlAs heterostructure is investigated. One-dimensional potential modulation is imposed on the two-dimensional electron gas by means of a set of metal strips formed on the planar surface of Hall bars. The dependences of the differential resistance rxx on the magnetic field B < 0.5 T are studied at a temperature T = 1.6 K in lattices with a period of a ≈ 200nm. It is shown that periodic oscillations in rxx(1/B) occur in such lattices under the action of a current-induced Hall field due to Zener tunneling between Landau levels. Interference is found between Zener oscillations and commensurability oscillations of rxx in two-dimensional electron systems with one-dimensional periodic modulation. The experimental results are qualitatively explained by the role of Landau bands in nonlinear transport at large filling factors.  相似文献   

13.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

14.
Recently there were presented several proposals how to formulate the binary relations describing κ-deformed oscillator algebras. In this paper we shall consider multilinear products of κ-deformed oscillators consistent with the axioms of braided algebras. In general case the braided triple products are quasi-associative and satisfy the hexagon condition depending on the coassociator \({\Phi \in A\otimes A\otimes A}\) . We shall consider only the products of κ-oscillators consistent with co-associative braided algebra, with \({\Phi =1}\) . We shall consider three explicit examples of binary κ-deformed oscillator algebra relations and describe briefly their multilinear coassociative extensions satisfying the postulates of braided algebras. The third example, describing κ-deformed oscillators in group manifold approach to κ-deformed fourmomenta, is a new result.  相似文献   

15.
One-dimensional localized waves, which can be considered as soliton elementary excitations, exist in a magnet with a unit spin and comparable bilinear and biquadratic spin-spin interactions, with which the state of spin nematic is realized. These excitations are characterized by a certain momentum P and a certain energy E. The structure of these solitons has been found, and the E = E(P) dependence, which plays the role of the dispersion law of these soliton elementary excitations, has been constructed. The energy of a soliton with a certain momentum is shown to be lower than that of the quasiparticles of a linear theory. At small momenta, these E = E(P) dependences of the soliton and quasiparticles coincide asymptotically. The dependence of the soliton energy on the soliton momentum is a periodic function with a period P 0 = π?/a, whose value does not depend on exchange integrals and depends only on a single crystal parameter, namely, the interatomic distance a. These soliton excitations have common features with the so-called Lieb states, which are well known in many condensed matter models.  相似文献   

16.
de Haas-van Alphen oscillation spectrum of two-dimensional systems is studied for general power law energy dispersion, yielding a Fermi surface area of the form S(E) ∝ E α for a given energy E. The case α = 1 stands for the parabolic energy dispersion. It is demonstrated that the periodicity of the magnetic oscillations in inverse field can depend notably on the temperature. We evaluated analytically the Fourier spectrum of these oscillations to evidence the frequency shift and smearing of the main peak structure as the temperature increases.  相似文献   

17.
Oscillations in the superconducting transition temperature ΔT c (P), in the critical magnetic field ΔH c (P), in the thermopower α / T (T 2), and in electrical resistivity ρ(T) (P is pressure) of Mo1?x -Re x alloys are observed at low temperatures against the background of specific features related to an electronic-topological transition (ETT) in these alloys. The oscillations are sensitive to the impurity concentration: they increase when the Re impurity concentration is close to the critical concentration C c at which the ETT occurs. Oscillations are also detected in the concentration dependences of the temperature coefficient of resistivity (?ρ / ?T (C)) and the thermopower derivative (?(α/T) / ?T 2 (C)) of Mo1?x -Re x alloys at low temperatures. The former and latter oscillations are shown to correlate with each other. These specific features are assumed to result from the ETT and to be related to the localization of the part of the electrons that fill a new cavity in the Fermi surface during this transition.  相似文献   

18.
The amplitude gAB of Aharonov-Bohm oscillations in a small semiconductor ring interferometer is studied as a function of the average conductance GAV. Experimentally, it is found that, in the tunneling regime, the relative amplitude gAB/GAV of h/e oscillations is constant in the rings under investigation and smaller than unity. The small value of gAB/GAV in ring interferometers in the tunneling regime at low temperatures is explained by the difference in the amplitudes of the interfering electron waves.  相似文献   

19.
Time dependences of the azimuthal component of the torque T φ(t) acting on magnetization are calculated to understand the nature of the delayed magnetization acceleration effect observed during the 90° pulsed magnetization of real ferrite–garnet films, in which biaxial anisotropy exists alongside with in-plane anisotropy. A calculation technique based on analyzing an operating point trajectory is used. Calculations show that if the effective anisotropy field H K2 is comparable to the magnetizing pulse amplitude H ma, abruptly ascending regions at characteristic times t* in curves T φ(t) arise, in the limit of which nonlinear magnetization oscillations formed. The shape of these regions depends weakly on the magnetizing pulse front duration τf. This explains the reason of the weak dependence of the nonlinear magnetization oscillations on duration of the magnetizing pulse front. Calculations also show that the main features of the delayed acceleration effect are less clear upon an increase of the pulse amplitude: the behavior of curves T φ(t) becomes smoother near times t*, and an increase in the pulse front duration is accompanied by a stronger drop in the intensity of magnetization oscillations.  相似文献   

20.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号