首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《物理通报》2007,(12):37-39
题解134考虑一座平均密度为P的“盒子形状”的山脉,其底部面积A,高度为h.要使其底部厚度为d、比热为L的一层熔化,所需的能量为AdpL.山脉的总质量近似为Ahp,并且如果山脉下降一定的距离d所释放的能量为Ahpgd.  相似文献   

2.
为有效分析固定倾斜安装的多排双面太阳能组件背面辐照度,通过视觉因子辐照度模型分析,将行间距为D的地面划分为n段,并区分阴影区和非阴影区,经过对地面接收散射辐照度的视觉因子,及各电池接收地面反射视觉因子的修正,实现了组件背面辐照度模型改进。模拟与实验结果表明:在某晴朗天气下,倾斜角为26°,离地高度为1.5 m,行间距为4 m,组件长度为1.7 m,地面反射率为30%时,双面组件获取的总辐照度较单面组件增益为18.98%,模型与测量辐照度误差为0.68%。  相似文献   

3.
1 问题的提出 电源电动势为E,内阻为r,外电路为一滑动变阻器R外. 试分析:外电阻为多大时,电源输出功率最大?  相似文献   

4.
太阳能槽式系统反射镜玻璃厚度对聚光特性的影响   总被引:1,自引:0,他引:1  
陈飞  李明  季旭  罗熙  王六玲 《光学学报》2012,32(12):1208002
针对太阳能槽式系统反射镜玻璃厚度对聚光特性的影响进行了理论、模拟和实验研究。研究结果表明,平行光下反射镜玻璃越厚,入射光线距光轴距离越远,ΔX、ΔY越大。对焦距为1200 mm,反射镜玻璃折射率为1.6的槽式系统进行了理论计算,玻璃厚度为1 mm的反射镜,当距光轴距离为200 mm和2000 mm时,ΔX为0.03 mm和1.69 mm,ΔY为0.19 mm和0.31 mm;当距光轴距离仍为2000 mm时,玻璃厚度为5 mm的反射镜,ΔX为8.41 mm,ΔY为1.55 mm。通过TracePro模拟以及实际实验测量,结果与理论计算相符。  相似文献   

5.
在利用可见-近红外漫透射光谱技术对苹果的可溶性固形物(SSC)检测时,由于卤素灯光照射在苹果上的位置不同,采集到的苹果光谱中所包含的可溶性固形物信息不同,导致模型得出的结果不同;找到一个最好的苹果光照位置有利于得到最佳的可溶性固形物评价模型。利用多模式可调节的光学结构在相同的实验环境和实验条件下采集了购买于同一水果批发商的尺寸相近但照射位置不同的两批苹果的近红外漫透射光谱,探索苹果可溶性固形物模型建立过程中最佳的照射位置从而得到最佳位置的可溶性固形物评价模型。通过对样品进行光谱采集、糖度真值采集并结合化学计量学方法得出最佳的建模位置,照射位置为上部且光谱没有预处理时的偏最小二乘回归(PLS)模型性能为RMSEC为0.288 2,RMSEP为0.343 6,Rc为0.960 6,Rp为0.934 9;照射位置为斜上部且光谱没有预处理的PLS模型性能为RMSEC为0.340 7,RMSEP为0.513 3,Rc为0.931 1,Rp为0.863 6;照射位置为上部且光谱没有预处理的主成分分析回归(PCR)模型性能为RMSEC为0.573 6,RMSEP为0.601 4,Rc为0.842 4,Rp为0.800 7;照射位置为斜上部且光谱没有预处理的PCR模型性能为RMSEC为0.709 2,RMSEP为0.797 4,Rc为0.701 4,Rp为0.670 7,最佳照射位置为苹果上部;进一步地采用多种预处理方法对照射位置为上部的PLS模型进行对比,得到最优模型为MSC-PLS模型,其RMSEC为0.2264 4,RMSEP为0.301 5,Rc为0.966 9,Rp为0.949 9。最后再对相同的46个苹果进行相同的实验操作得到光谱、真值后,代入到建立的MSC-PLS模型中进行外部验证,结果显示外部验证的相关系数为0.930 58,验证均方根误差为0.843 59,验证了建立的MSC-PLS模型的稳定性和可靠性,进一步表明光谱采集位置为苹果上部时的近红外漫透射模型有很好的预测能力,该研究为预测苹果可溶性固形物的检测提供了技术支持。  相似文献   

6.
CdTe量子点-罗丹明B荧光共振能量转移法测定溶菌酶   总被引:4,自引:4,他引:0       下载免费PDF全文
高桂园  刘璐  付璇  杨冉  屈凌波 《发光学报》2012,33(8):911-915
合成了以硫代乙醇酸为稳定剂的CdTe量子点,以发射波长为530 nm的量子点为供体,罗丹明B为受体,建立一种以十六烷基三甲基溴化铵为介质的荧光共振能量体系检测溶菌酶含片中溶菌酶含量的方法。结果表明:在pH=5.0时,溶菌酶的浓度与共振能量转移效率降低值在2×10-7~ 8×10-6 mol·L-1范围内呈线性关系,其线性方程为Y=306.07-13.85X,相关系数为0.991 0,检出限为2×10-8 mol·L-1,RSD为5.8%,平均回收率为101%(n=5)。  相似文献   

7.
题目:小明上学的路途,有2/5为上坡路,3/5为下坡路,他在上坡路上的平均速度为40 m/min,在下坡路上的平均速度为60 m/min,则他放学途中的平均速度是--;若他在放学途中,上、下坡时的平均速度和上学相同,上学时间为40 min,则回来的时间为___min,学校到家有____km.  相似文献   

8.
袁桃利  王秀峰  朱小娟  张宏科  牟强 《光子学报》2014,38(10):2530-2533
采用具有空穴阻挡层的器件,结构为ITO/2T-NATA(60nm)/NPB(50nm)/NPB(30nm):DCJTB/NPB(40nm)/BCP(10nm)/Alq(80nm)/LiF(1nm)/Al(20nm),结果表明,DCJTB的掺入量的微小改变对器件的色度影响很大,当DCJTB的掺入量为1.22%时,器件的颜色偏黄绿,其色坐标为(0.3363,0.3871),峰值波长为561nm,起亮电压为10V。亮度为19000cd/m2。而当DCJTB的掺入量为0.94%时,器件的色度偏蓝,其色坐标为(0.2555,0.2741)峰值波长为449nm,亮度为15000cd/m2。当DCJTB的掺浓度为1.0时,器件接近白色。此时器件的起亮电压为7V,亮度也很好。  相似文献   

9.
 应用流体静压法制备YBaCuO体系大型高Tc超导棒材。样品尺寸为Φ11 mm×115 mm,其中外形规正,密度均匀。超导转变参数为:起始转变温度为105~106 K,零电阻温度为89~92 K,中点转变温度为92~93 K,转变宽度为5 K左右。  相似文献   

10.
质量为m、电荷量为q的大量粒子,以相同速率v垂直射入磁感应强度为B的匀强磁场中,将在磁场中做半径为r-mv/bq的匀速圆周运动.若粒子运动中都经过磁场中某点P,则其轨迹圆的圆心集合是以P点为圆心、r为半径的圆(以下统称"圆心圆"),如图1虚线所示.以"圆心圆"知识为载体,考查学生综合应用数学、物理知识的试题,在近几年的高考和  相似文献   

11.
十二烷基苯磺酸钠的超声降解研究   总被引:18,自引:2,他引:16       下载免费PDF全文
刘岩 《应用声学》1999,18(2):35-37
采用频率为1.8MHz,声强近似为5W·cm~-2的超声波,在固定式声化学的应器内研究了初始浓度为200mg/L-400mg/L的十二烷基苯磺酸钠(DBS)溶液的声化学降解情况.实验表明,浓度的改变对TOC的削减率无明显的影响,溶液的PH值对降解率则有显著影响,碱性条件下(PH=13),DBS几乎无降解,酸性条件下(PH=3)TOC削减率≤10%.通过分析降解过程中溶液的紫外光谱(190-340nm),发现降解过程中有复杂的中间产物生成,包括小分子烃类碎片及硝基化合物。我们认为,能使溶液表面张力。降低的表面活性剂,其声化学降解率低的原因在于,溶液表面张力下降后影响了溶液中空化效应的产生,从而降低了溶液中声化学反应的强度,致使TOC削减率不高。  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(6):1976-1981
This report describes the effects of H2O2 concentration (0.01, 0.1, 1, and 10 mM) on the sonochemical degradation of phenol and bisphenol A (BPA) using an ultrasonic source of 35 kHz and 0.08 W/mL. The concentration of the target pollutants (phenol or BPA), total organic carbon (TOC), and H2O2 were monitored for each input concentration of H2O2. The effects of H2O2 on the sonochemical degradation of phenol was more significant than that of BPA because phenol has a high solubility and low octanol–water partition coefficient (Kow) value and is subsequently very likely to remain in the aqueous phase, giving it a greater probability of reacting with H2O2. The removal of TOC was also enhanced by the addition of H2O2. Some intermediates of BPA have a high Kow value and subsequently have a greater probability of pyrolyzing by the high temperatures and pressures inside of cavitation bubbles. Thus the removal efficiency of TOC in BPA was higher than that of phenol. The removal efficiencies of TOC were lower than the degradation efficiencies of phenol and BPA. This result is due to the fact that some intermediates cannot readily degrade during the sonochemical reaction. The H2O2 concentration decreased but was not completely consumed during the sonochemical degradation of pollutants. The initial H2O2 concentration and the physical/chemical characteristics of pollutants were considered to be important factors in determining the formation rate of the H2O2. When high concentration of H2O2 was added to the solution, the formation rates were relatively low compared to when low concentrations of H2O2 were used.  相似文献   

13.
This study investigated the degradation of diethyl phthalate (DEP) by sonolytic, photolytic and sonophotolytic processes. Two types of UV lamps, UVC (254 nm) and VUV (185 nm + 254 nm), were combined with ultrasound (283 kHz). The pseudo-first order degradation rate constants were in the order of 10?1–10?3 min?1 depending on the processes. The sonolytic DEP degradation rate increased with increasing applied power. Photolytic or sonophotolytic degradation of DEP when using a VUV lamp appeared to be effective because the photo ?? (UVC/VUV) resulted in a significantly faster degradation than the photo ? (UVC) processes due to the higher photon energy and higher hydroxyl radical generation by homolysis of water by VUV. Significant degradation and mineralization (TOC) of DEP were observed with the combined sonophotolytic processes. Moreover, synergistic effects of 1.68 and 1.23 were exhibited at DEP degradation of the sonophoto I and sonophoto II processes, respectively. This was attributed to the UV-induced dissociation of hydrogen peroxide (H2O2) generated by the application of US to hydroxyl radicals. Therefore, US in sonophotolytic processes can play an important role in enhancing DEP degradation. Moreover, the sonophoto ?? process is more effective on the mineralization and biodegradability of DEP.  相似文献   

14.
An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts.  相似文献   

15.
The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H2O2/Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35 min). The synergism between the UV process and the sonolytic one was quantified as 55.2%.To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28 L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H2O2/Fe process reaching 60% of mineralization would cost 2.1 and 3.8 €/m3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate.In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36 €/m3. However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated.  相似文献   

16.
Sonoelectrochemical decomposition of organic compounds is a developing technique among advanced oxidation processes (AOPs). It has the advantage over sonication alone that it increases the efficiency of the process in terms of a more rapid decrease in chemical oxygen demand (COD) and in total organic carbon (TOC) and accelerates electrochemical oxidation which normally requires a lengthy period of time to achieve significant mineralisation. Moreover the use of an electrocatalytic electrode in the process further accelerates the oxidation reaction rates. The aim of this study was to improve the decomposition efficiency of methylene blue (MB) dye by sonoelectrochemical decomposition using environmentally friendly and cost-effective Ti/Ta2O5–SnO2 electrodes. Decolourisation was used to assess the initial stages of decomposition and COD together with TOC was used as a measure of total degradation. The effect of a range of sonication frequencies 20, 40, 380, 850, 1000 and 1176 kHz at different powers on the decolourisation efficiency of MB is reported. Frequencies of 850 and 380 kHz and the use of higher powers were found more effective towards dye decolourisation. The time for complete MB degradation was reduced from 180 min using electrolysis and from 90 min while carrying out sonolysis to 45 min when conducting a combined sonoelectrocatalytic experiments. The COD reduction of 85.4% was achieved after 2 h of combined sonication and electrolysis which is a slightly higher than after a single electrolysis (78.9%) and twice that of sonolysis (40.4%). A dramatic improvement of mineralisation values were observed within 2 h of sonoelectrocatalytic MB degradation. The TOC removal efficiency increased by a factor of 10.7 comparing to sonication alone and by a factor of 1.5 comparing to the electrolytic process. The energy consumption (kWh/m3) required for the complete degradation of MB was evaluated.  相似文献   

17.
A system of ultrasound radiation coupled with Zn0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15 min, with Zn0 dosage of 0.1 g/L and ultrasound density of 0.6 W/cm3. TOC removal of 72.6% in 15 min and dechlorination efficiency of diclofenac reached 70% in 30 min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO2 finally. The synergistic effect of US/Zn0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation.  相似文献   

18.
In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H2O2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H2O2 at a dye to H2O2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5–10 min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3 g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(4):1310-1317
A novel sonoelectrochemical catalytic oxidation-driven process using a nanocoated electrode to treat methylene blue (MB) wastewater was developed. The nano-scale (nanocoated) electrode generated more hydroxyl radicals than non-nano-scale (non-nanocoated) electrodes did. However, hydroxyl radicals were easily adsorbed by the nanomaterial and thus were not able to enter the solution. Supersonic waves were found to enhance the mass-transfer effect on the nanocoated electrode surface, resulting in rapid diffusion of the generated hydroxyl radicals into the solution. In solution, the hydroxyl radicals then reacted with organic pollutants in the presence of ultrasonic waves. The effect of the nanocoated electrode on the MB wastewater treatment process was enhanced by ultrasound when compared to the non-nanocoated electrode used under the same conditions. The synergy of the nanocoated electrode and ultrasonic waves towards MB degradation was then studied. The optimum operating conditions resulted in a 92% removal efficiency for TOC and consisted of a current of 600 mA, an ultrasound frequency of 45 kHz, and a supersonic power of 250 W. The mechanism of ultrasound enhancement of the nanocoated electrode activity with respect to MB treatment is discussed. The reaction intermediates of the sonoelectrochemical catalytic oxidation process were monitored, and degradation pathways were proposed. The sonoelectrochemical catalytic oxidation-driven process using nanocoated electrodes was found to be a very efficient method for the treatment of non-biodegradable wastewater.  相似文献   

20.
A comparative study was carried out of sonochemical (SCh), electrochemical (ECh) and sonoelectrochemical (SECh) strategies for the degradation of the fungicide thiram in dilute aqueous solution. The SCh and SECh studies were performed using a sonicator equipped with an 11 mm titanium-alloy probe and operated at 20 kHz with a power intensity of 523 W cm−2. In the ECh and SECh investigations, galvanostatic electrolyses were implemented using a single compartment electrochemical cell with a boron-doped diamond electrode as anode and applied current densities in the range 10–50 mA cm−2. For these processes, the decrease in concentration of thiram was monitored by high performance liquid chromatographic (HPLC) analysis and values of current efficiency and energy consumption were determined. The results showed that the rate of degradation of thiram and the amount of energy consumed were directly proportional to the applied current density, while current efficiency was inversely related to current density. The kinetics of thiram degradation followed a pseudo first order model with apparent rate constants in the region of 10−3 min−1. Thiram in aqueous solution was subjected to “exhaustive” degradation by ECh and SECh processes for 5 h at applied current densities of 35 mA cm−2 and the intermediates/byproducts so-formed were identified by HPLC–mass spectrometry. Mechanisms of the degradation reactions have been proposed on the basis of the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号