首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal layers play an important role in environmental studies, for example in the movement of radionuclides in nuclear waste management. New characterization techniques are required for studying such complex, porous layers. The purpose of this work is to adapt coherence probe microscopy (CPM), which is typically used for measuring the surface roughness of single surfaces, to the analysis of thick inhomogeneous colloidal layers. Two types of layers, either composed of 80 nm or 400 nm alumina colloidal particles deposited on glass slides by decantation have been studied. One of the problems in performing routine roughness measurements of colloidal layers using CPM is the appearance of apparent pits below the level of the substrate surface. We demonstrate that this is due to partial detection of the buried colloid/substrate interface. Further, we have developed the “Z-scan” technique, which consists of building up an XYZ image stack by scanning the full depth of the sample. Any point in an XY image can then be investigated to study the local buried internal structure, layer thickness, and effective refractive index. Comparison of results with AFM and SEM confirm the structure found with CPM and the new “Z-scan” technique, which opens up new and useful applications.  相似文献   

2.
We performed in-situ X-ray reflectivity measurements of gold films during sputter deposition on polished silicon substrates. The measurements were performed at several substrate temperatures and under two argon pressures. The gold surfaces were also examined by scanning tunneling microscopy after deposition to obtain their real-space topographic images. These images were used to complement the X-ray reflectivity measurements in determining the effect of argon pressure on the gold surface and its height-height difference functions. An approximation for height-height difference functions was employed to analyze the X-ray reflectivity data. The measured interface width during growth followed a simple power law, consistent with recent theoretical results of dynamic scaling behavior. The scaling exponents, however, do not agree well with predictions based on some models in 2 + 1 dimensions.  相似文献   

3.
 采用磁控共溅射工艺来制备Al-Cu-Fe薄膜,选用抛光状态的纯Al、纯Cu和不同粗糙度的不锈钢基作为基底材料。通过原子力显微镜分析薄膜的表面形貌,利用扫描电镜能谱仪分析薄膜的元素含量;通过MTS纳米力学综合测试系统分析薄膜的结合强度和摩擦因数。分析结果表明:不锈钢作为基底材料的薄膜与基体的结合强度最大,其次为纯铝和纯铜。纯铜基底薄膜的摩擦因数最大,达到0.17,其余两种薄膜的摩擦因数均不大于0.03。而薄膜表面形貌与基底材料的原始形貌有直接的联系,基底原始粗糙度越小,薄膜的表面组织也越细;基底原始粗糙度越大,薄膜表面形成的晶粒的团聚越明显。  相似文献   

4.
利用脉冲激光沉积法在带有Y2O3、YSZ隔离层的金属基带上制备了CeO2帽子层。主要讨论了温度、激光脉冲频率对CeO2隔离层的影响,用X射线θ~2θ扫描、Φ扫描对薄膜的取向和织构进行表征。结果表明在温度为610℃、激光频率为10Hz、1Pa氧压下制备的CeO2隔离层能有效地继承衬底的织构,平均平面内Φ扫描半高宽度为6.9°。扫描电镜可以观察到薄膜表面致密且无裂纹,原子力显微镜观测表面平均粗糙度在10nm以下。  相似文献   

5.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

6.
A comparison between roughness data obtained with an atomic force microscope (AFM) on different surfaces requires reliable roughness parameters. In order to specify the appropriate parameters for nanoscale roughness measurements, we compared the root mean square (rms) roughness and the relative surface area (sdr) as function of varying scan size, speed and pixel size. By using oxygen plasma (24 kJ) treated SU-8 with an average rms roughness of 2.6 ± 0.5 nm as reference surface, the repeatability of the method was evaluated for dynamic (tapping) and contact mode. The evaluation of AFM images indicated a decrease of the effective tip radius after a few measurements. This degradation of the tip lowers the resolution of the image and can affect roughness measurements.  相似文献   

7.
In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO2), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material.  相似文献   

8.
The effect of substrate roughness on growth of ultra thin diamond-like carbon (DLC) films has been studied. The ultra thin DLC films have been deposited on silicon substrates with initial surface roughness of 0.15, 0.46 and 1.08 nm using a filted cathodic vacuum arc (FCVA) system. The films were characterized by Raman spectroscope, transmission electron microscope (TEM) and atomic force microscopy (AFM) to investigate the evolution of the surface roughness as a function of the film thickness. The experimental results show that the evolution of the surface morphology in an atomic scale depends on the initial surface morphology of the silicon substrate. For smooth silicon substrate (initial surface roughness of 0.15 nm), the surface roughness decreased with DLC thickness. However, for silicon substrate with initial surface roughness of 0.46 and 1.08 nm, the film surface roughness decreased first and then increased to a maximum and subsequently decreased again. The preferred growth of the valley and the island growth of DLC were employed to interpret the influence of substrate morphology on the evolution of DLC film roughness.  相似文献   

9.
In this paper, we reported the possibility to image non-conducting P(VDF-TrFE) copolymer films by STM. The films had the thickness of ∼25.0 nm and were spin-coated onto Au or graphite substrates. For films deposited on Au substrates, STM images showed grain structures of ∼100 nm, much larger than the grains of bare Au substrate. With increased scan rate, the film surface was damaged by STM tip and extreme protrusions and holes were observed. For films deposited on graphite substrates, we only obtained an image of very flat plane and could not observe the topography of the film surface. It seemed that the tip had pierced through the uppermost P(VDF-TrFE) layers and only imaged the layers nearest to the substrate. Asymmetrical current-voltage curves were observed from copolymer films deposited on HOPG. Experimental results were discussed.  相似文献   

10.
Metal Organic Vapour Phase Epitaxy (MOVPE) of AlN and GaN layers at a temperature of 1080 C were performed on porous Si(111) and Si(111) substrates. The thermal stability of porous silicon (PS) is studied versus growth time under AlN and GaN growth conditions. The surface morphology evolution of the annealed PS is revealed by scanning electron microscopy (SEM). Porous Si(111) with low porosity (40%) is more thermally stable than porous Si(100) with relatively high porosity (60%).AlN layers with various thicknesses were grown under the same conditions on the two substrates. Morphological properties of AlN were studied by atomic force microscopy (AFM) and compared taking into account the two different surfaces of the substrates. The two growth kinetics of AlN were found to be different due to the initial surface roughness of the PS substrate. The effect of AlN buffer morphology on the qualities of subsequent GaN layers is discussed. Morphological qualities of GaN layers grown on PS are improved compared to those obtained on porous Si(100) but are still less than those grown on Si substrate.  相似文献   

11.
Thin films of copper selenide (CuSe) were physically deposited layer-by-layer up to 5 layers using thermal evaporation technique onto a glass substrate. Various film properties, including the thickness, structure, morphology, surface roughness, average grain size and electrical conductivity are studied and discussed. These properties are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ellipsometer and 4 point probe at room temperature. The dependence of electrical conductivity, surface roughness, and average grain size on number of layers deposited is discussed.   相似文献   

12.
The present study has been conducted in order to determine the influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings. Six types of coating samples with different substrate roughness were tested. The surface roughness and real surface area of both the substrates and coatings were studied by atomic force microscopy (AFM) techniques. The scratch tests performed at progressive loads were employed to evaluate the adhesion of the coatings. Cyclic oxidation tests were performed at 1100 °C in air for 50 cycles, each cycle consisting of 1 h heating in the tube furnace followed by 15 min cooling in the open air. The AFM measurements exhibit that the surface roughness of the sputtered NiCoCrAlY coating increases with the increasing of the superalloy substrate roughness. The NiCoCrAlY coatings present slightly lower roughness than the corresponding superalloy substrate. The scratch adhesion tests indicate that the coatings on substrates with a smoother surface possess better adhesion than on those with a rougher surface. Both the real surface area and oxidation weight gain of the coatings decrease with the decreasing of the superalloy substrate roughness. The NiCoCrAlY coating sputtered on the superalloy substrate with lower roughness provides relatively higher antioxidant protection than that provided by the coating with rougher substrate.  相似文献   

13.
Yttria-stabilized zirconia (YSZ) buffer layers were deposited on CeO2 buffered biaxially textured Ni-W substrate by reel-to-reel pulsed laser deposition (PLD) for the application of YBa2Cu3O7−δ (YBCO) coated conductor and the influence of substrate temperature and laser energy on their crystallinity and microstructure were studied. YSZ thin films were prepared with substrate temperature ranging from 600 to 800 °C and laser energy ranging from 120 to 350 mJ. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin film structure and surface morphology depend on these parameters. It was found that the YSZ films grown at substrate temperature below 600 °C or laser energy above 300 mJ showed amorphous phase, the (0 0 1) preferred orientation and the crystallinity of the YSZ films were improved with increasing the temperature, but the surface roughness increased simultaneously, the SEM images of YSZ films on CeO2/NiW tapes showed surface morphologies without micro-cracks. Based on these results, we developed the epitaxial PLD-YSZ buffer layer process at the tape transfer speed of 3-4 m/h by the reel-to-reel system for 100 m class long YBCO tapes.  相似文献   

14.
Tantalum oxide nano layers were deposition on glass substrate with different thicknesses (30, 60, 90 and 120 nm) in vertical deposition angle and high vacuum condition at room temperature by using electron gun evaporation method. There were no specific peaks in XRD patterns because of amorphous nature of these layers. AFM results show that surface roughness is reduced by increasing the thickness of the layers. FESEM images show nucleation, growth, accession and integration as interconnected islands in the lower thickness and re-nucleation at higher thicknesses (120 nm). We studied Raman spectra of the produced Ta2O5 amorphous layers. The calculated optical coefficients by using Kramers-Kronig relations show that with increasing film thickness, dielectric properties, absorption coefficient and band gap energy have increased.  相似文献   

15.
A series of hydrogenated amorphous carbon (a-C:H) films were deposited on silicon substrates by microwave plasma chemical vapor deposition technique with a mixture of hydrogen and acetylene. The effects of flow ratio of hydrogen to acetylene on surface morphology and structure of a-C:H films were investigated using surface-enhanced Raman spectroscopy and scanning probe microscope (SPM) in the tapping AFM mode. Raman data imply a transition from graphite-like phase to diamond-like bonding configurations when the flow ratio increases. AFM measurements show that the increase in hydrogen content, to some extent, can smoothen the surface morphology and decrease the RMS roughness. Excessive hydrogen is found to cause the formation of polymeric hydrocarbon clusters in the films and reduce deposition rate.  相似文献   

16.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

17.
Nano-structured “teflon-like” coatings characterized by highly-fluorinated, random, ribbon-shaped, micrometers-long structures were deposited on polyethylenetherephtalate (PET) substrates by plasma enhanced-chemical vapour deposition (PE-CVD) using modulated radiofrequency (RF, 13.56 MHz) glow discharges fed with C2F4 in modulated discharge (MD) and continuous wave (CW) regimes. Surfaces obtained in this way featured identical chemical composition and different roughness in the nanometric scale. Water contact angle (WCA) measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized to characterize the surfaces. A positive relationship was shown to exist between the WCA value and the mean nano-structure height and the area root-mean-square (RMS) roughness of coatings. The possibility of obtaining coatings of varying nano-structure height, i.e., roughness, in a nanometric scale represents a promising result for further use of these surfaces as substrates for experiments on cell adhesion, proliferation and growth.  相似文献   

18.
We found the decreases of amorphous incubation volume from Raman spectra and surface roughness from AFM in hydrogenated microcrystalline silicon (μc-Si:H) films deposited with a pre-hydrogen glow discharge. The above phenomena are attributed to the increase in the nuclei density as observed by AFM measurements. Substrate surface morphology of eagle2000 glass modified by wet etching also has a positive effect on the nucleation and crystalline formation. In addition, μc-Si:H doped layer is also beneficial for decreasing the amorphous incubation layer thickness because of surface roughness and crystallinity in the μc-Si:H doped layer.  相似文献   

19.
The growth of thermally deposited CaF2 films was studied using three different substrates for deposition: glass, gold and silicon. Each substrate was chosen because of its different topography and used to determine the effect of substrate roughness on the growth of CaF2 films. After thermally depositing a range of CaF2 film thicknesses on the substrates, the CaF2 surfaces were imaged using atomic force microscopy. The images were then used to determine the characteristic exponents which described the surface. In each case the Hurst exponent, H was found to rapidly increase from the initial substrate condition to a constant value (H ≈ 0.85) with increasing CaF2 film thickness. This rapid crossover is quite remarkable and occurs in films with nominal thicknesses less than ≈20 nm. These data indicate that the roughness of the substrate, or in other words the initial conditions, have little effect on the growth properties of CaF2 films beyond the crossover at very small values of the film thickness. The scaling of the dynamic exponent, β, is also presented as are measurements of the CaF2 film porosity.  相似文献   

20.
电化学沉积法制备高温超导YBa2Cu3O7-δ涂层导体缓冲层具有工艺简单、设备要求低、易于连续化批量制备等优点。采用电化学沉积法,在双轴织构的Ni-5at.%W(Ni-5W)金属基带上成功制备出了具有良好c轴取向的CeO2缓冲层薄膜。利用X射线衍射、极图、扫描电子显微镜和原子力显微镜等对上述氧化物薄膜的织构、表面形貌等进行表征。重点研究了薄膜厚度、退火温度、退火时间等工艺对薄膜外延生长及其表面形貌的影响,结果表明:电化学沉积方法制备的CeO2缓冲层具有很好的双轴织构、表面平整、均一,粗糙度低,表现出良好的缓冲层性质。结合金属有机化学溶液超导层的制备技术,本工作展示了一条全化学法制备第二代高温超导带材的技术路线,具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号