首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitch intervals are central to most musical systems, which utilize pitch at the expense of other acoustic dimensions. It seemed plausible that pitch might uniquely permit precise perception of the interval separating two sounds, as this could help explain its importance in music. To explore this notion, a simple discrimination task was used to measure the precision of interval perception for the auditory dimensions of pitch, brightness, and loudness. Interval thresholds were then expressed in units of just-noticeable differences for each dimension, to enable comparison across dimensions. Contrary to expectation, when expressed in these common units, interval acuity was actually worse for pitch than for loudness or brightness. This likely indicates that the perceptual dimension of pitch is unusual not for interval perception per se, but rather for the basic frequency resolution it supports. The ubiquity of pitch in music may be due in part to this fine-grained basic resolution.  相似文献   

2.
Three experiments investigated the relationship between harmonic number, harmonic resolvability, and the perception of harmonic complexes. Complexes with successive equal-amplitude sine- or random-phase harmonic components of a 100- or 200-Hz fundamental frequency (f0) were presented dichotically, with even and odd components to opposite ears, or diotically, with all harmonics presented to both ears. Experiment 1 measured performance in discriminating a 3.5%-5% frequency difference between a component of a harmonic complex and a pure tone in isolation. Listeners achieved at least 75% correct for approximately the first 10 and 20 individual harmonics in the diotic and dichotic conditions, respectively, verifying that only processes before the binaural combination of information limit frequency selectivity. Experiment 2 measured fundamental frequency difference limens (f0 DLs) as a function of the average lowest harmonic number. Similar results at both f0's provide further evidence that harmonic number, not absolute frequency, underlies the order-of-magnitude increase observed in f0 DLs when only harmonics above about the 10th are presented. Similar results under diotic and dichotic conditions indicate that the auditory system, in performing f0 discrimination, is unable to utilize the additional peripherally resolved harmonics in the dichotic case. In experiment 3, dichotic complexes containing harmonics below the 12th, or only above the 15th, elicited pitches of the f0 and twice the f0, respectively. Together, experiments 2 and 3 suggest that harmonic number, regardless of peripheral resolvability, governs the transition between two different pitch percepts, one based on the frequencies of individual resolved harmonics and the other based on the periodicity of the temporal envelope.  相似文献   

3.
The loudness of auditory (A), tactile (T), and auditory-tactile (A+T) stimuli was measured at supra-threshold levels. Auditory stimuli were pure tones presented binaurally through headphones; tactile stimuli were sinusoids delivered through a single-channel vibrator to the left middle fingertip. All stimuli were presented together with a broadband auditory noise. The A and T stimuli were presented at levels that were matched in loudness to that of the 200-Hz auditory tone at 25 dB sensation level. The 200-Hz auditory tone was then matched in loudness to various combinations of auditory and tactile stimuli (A+T), and purely auditory stimuli (A+A). The results indicate that the matched intensity of the 200-Hz auditory tone is less when the A+T and A+A stimuli are close together in frequency than when they are separated by an octave or more. This suggests that A+T integration may operate in a manner similar to that found in auditory critical band studies, further supporting a strong frequency relationship between the auditory and somatosensory systems.  相似文献   

4.
A melodic pitch experiment was performed to demonstrate the importance of time-interval resolution for pitch strength. The experiments show that notes with a low fundamental (75 Hz) and relatively few resolved harmonics support better performance than comparable notes with a higher fundamental (300 Hz) and more resolved harmonics. Two four note melodies were presented to listeners and one note in the second melody was changed by one or two semitones. Listeners were required to identify the note that changed. There were three orthogonal stimulus dimensions: F0 (75 and 300 Hz); lowest frequency component (3, 7, 11, or 15); and number of harmonics (4 or 8). Performance decreased as the frequency of the lowest component increased for both F0's, but performance was better for the lower F0. The spectral and temporal information in the stimuli were compared using a time-domain model of auditory perception. It is argued that the distribution of time intervals in the auditory nerve can explain the decrease in performance as F0, and spectral resolution increase. Excitation patterns based on the same time-interval information do not contain sufficient resolution to explain listener's performance on the melody task.  相似文献   

5.
王健  关添  叶大田 《声学学报》2013,38(1):99-104
通过测量谐波复合音的基频辨别阈,探讨中等"高次谐波"的音高感知是否依赖于谐波的可分离性,以及掩蔽音对实验结果的影响。实验方法:在目标音单独存在或目标音与掩蔽音混合时,将刺激通过高、中、低三个带通滤波器以获得不同的谐波可分离度。实验刺激设计为5种基频差异和4种相位组合。五名被试均为年轻人,纯音听阈≤15 dB HL。研究结果发现:谐波复合音的基频辨别阈随着信号频段的上移而增大;目标音和掩蔽音的基频差异对基频辨别阈有显著影响;但相位影响不显著。结论:谐波的可分离性对基频辨别阈有显著影响,但中等"高次谐波"的音高感知不依赖于可分离性;混合音的大部分音高感知结果与兴奋模式的峰值大小密切相关。   相似文献   

6.
These experiments address the following issues. (1) When two complex tones contain different harmonics, do the differences in timbre between them impair the ability to discriminate the pitches of the tones? (2) When two complex tones have only a single component in common, and that component is the most discriminable component in each tone, is the frequency discrimination of the component affected by differences in residue pitch between the two tones? (3) How good is the pitch discrimination of complex tones with no common components when each tone contains multiple harmonics, so as to avoid ambiguity of pitch? (4) Is the pitch discrimination of complex tones with common harmonics impaired by shifting the component frequencies to nonharmonic values? In all experiments, frequency difference limens (DLCs) were measured for multiple-component complex tones, using an adaptive two-interval, two-alternative, forced-choice task. Three highly trained subjects were used. The main conclusions are as follows. (1) When two tones have the first six harmonics in common, DLCs are larger when the upper harmonics are different than when the upper harmonics are in common or are absent. It appears that differences in timbre impair DLCs. (2) Discrimination of the frequency of a single common partial in two complex tones is worse when the two tones have different residue pitches than when they have the same residue pitch. (3) DLCs for complex tones with no common harmonics are generally larger than those for complex tones with common harmonics. For the former, large individual differences occur, probably because subjects are affected differently by differences in timbre. (4) DLCs for harmonic complex tones are smaller than DLCs for complex tones in which the components are mistuned from harmonic values. This can probably be attributed to the less distinct residue pitch of the inharmonic complexes, rather than to reduced discriminability of partials. Overall, the results support the idea that DLCs for complex tones with common harmonics depend on residue pitch comparisons, rather than on comparisons of the pitches of partials.  相似文献   

7.
The relationship between auditory perception and vocal production has been typically investigated by evaluating the effect of either altered or degraded auditory feedback on speech production in either normal hearing or hearing-impaired individuals. Our goal in the present study was to examine this relationship in individuals with superior auditory abilities. Thirteen professional musicians and thirteen nonmusicians, with no vocal or singing training, participated in this study. For vocal production accuracy, subjects were presented with three tones. They were asked to reproduce the pitch using the vowel /a/. This procedure was repeated three times. The fundamental frequency of each production was measured using an autocorrelation pitch detection algorithm designed for this study. The musicians' superior auditory abilities (compared to the nonmusicians) were established in a frequency discrimination task reported elsewhere. Results indicate that (a) musicians had better vocal production accuracy than nonmusicians (production errors of 1/2 a semitone compared to 1.3 semitones, respectively); (b) frequency discrimination thresholds explain 43% of the variance of the production data, and (c) all subjects with superior frequency discrimination thresholds showed accurate vocal production; the reverse relationship, however, does not hold true. In this study we provide empirical evidence to the importance of auditory feedback on vocal production in listeners with superior auditory skills.  相似文献   

8.
Listeners' auditory discrimination of vowel sounds depends in part on the order in which stimuli are presented. Such presentation order effects have been argued to be language independent, and to result from psychophysical (not speech- or language-specific) factors such as the decay of memory traces over time or increased weighting of later-occurring stimuli. In the present study, native Cantonese speakers' discrimination of a linguistic tone continuum is shown to exhibit order of presentation effects similar to those shown for vowels in previous studies. When presented with two successive syllables differing in fundamental frequency by approximately 4 Hz, listeners were significantly more sensitive to this difference when the first syllable was higher in frequency than the second. However, American English-speaking listeners with no experience listening to Cantonese showed no such contrast effect when tested in the same manner using the same stimuli. Neither English nor Cantonese listeners showed any order of presentation effects in the discrimination of a nonspeech continuum in which tokens had the same fundamental frequencies as the Cantonese speech tokens but had a qualitatively non-speech-like timbre. These results suggest that tone presentation order effects, unlike vowel effects, may be language specific, possibly resulting from the need to compensate for utterance-related pitch declination when evaluating fundamental frequency for tone identification.  相似文献   

9.
This study tested the relationship between frequency selectivity and the minimum spacing between harmonics necessary for accurate fo discrimination. Fundamental frequency difference limens (fo DLs) were measured for ten listeners with moderate sensorineural hearing loss (SNHL) and three normal-hearing listeners for sine- and random-phase harmonic complexes, bandpass filtered between 1500 and 3500 Hz, with fo's ranging from 75 to 500 Hz (or higher). All listeners showed a transition between small (good) fo DLs at high fo's and large (poor) fo DLs at low fo's, although the fo at which this transition occurred (fo,tr) varied across listeners. Three measures thought to reflect frequency selectivity were significantly correlated to both the fo,tr and the minimum fo DL achieved at high fo's: (1) the maximum fo for which fo DLs were phase dependent, (2) the maximum modulation frequency for which amplitude modulation and quasi-frequency modulation were discriminable, and (3) the equivalent rectangular bandwidth of the auditory filter, estimated using the notched-noise method. These results provide evidence of a relationship between fo discrimination performance and frequency selectivity in listeners with SNHL, supporting "spectral" and "spectro-temporal" theories of pitch perception that rely on sharp tuning in the auditory periphery to accurately extract fo information.  相似文献   

10.
Gockel, Carlyon, and Plack [J. Acoust. Soc. Am. 116, 1092-1104 (2004)] showed that discrimination of the fundamental frequency (F0) of a target tone containing only unresolved harmonics was impaired when an interfering complex tone with fixed F0 was added to the target, but filtered into a lower frequency region. This pitch discrimination interference (PDI) was greater when the interferer contained resolved harmonics than when it contained only unresolved harmonics. Here, it is examined whether this occurred because, when the interferer contained unresolved harmonics, "pitch pulse asynchrony (PPA)" between the target and interferer provided a cue that enhanced performance; this was possible in the earlier experiment because both target and interferer had components added in sine phase. In experiment 1, it was shown that subjects were moderately sensitive to the direction of PPA across frequency regions. In experiments 2 and 3, PPA cues were eliminated by adding the components of the target only, or of both target and interferer, in random phase. For both experiments, an interferer containing resolved harmonics produced more PDI than an interferer containing unresolved harmonics. These results show that PDI is smaller for an interferer with unresolved harmonics even when cues related to PPA are eliminated.  相似文献   

11.
Sound quality evaluation of the booming sensation for passenger cars   总被引:1,自引:0,他引:1  
Automotive booming noise due to powertrain occurs when pure or narrow band tones related to the firing frequency of engine and its harmonics excite the passenger cavity, which entails a prominent increase of sound intensity. The booming sensation has been considered as very important to the acoustic comfort of passengers. In this study, a sound quality index which can objectively evaluate the booming sensation was derived. Because of the tonal nature of powertrain booming noise, subjective pitch was employed to find only aurally relevant tonal components which influence booming sensation as well as loudness. Using the empirical data and the frequency difference limen for just-noticeable change of booming sensation obtained from the listening test, an existing pitch extraction algorithm could be modified. The modified pitch model was applied to the interior noises of accelerating passenger cars together with a loudness analysis for representing the objective features of booming feeling. Subjective tests using the magnitude estimation method were conducted to evaluate the degree of booming sensation. Finally, booming strength was proposed for quantifying the booming sensation, which was validated by subjective results. The correlation coefficient between the derived booming strength and the degree of booming sensation obtained by the subjective test was 0.926.  相似文献   

12.
Carlyon and Shackleton [J. Acoust. Soc. Am. 95, 3541-3554 (1994)] suggested that fundamental-frequency (F0) discrimination performance between resolved and unresolved harmonics is limited by an internal "translation" noise between the outputs of two distinct F0 encoding mechanisms, in addition to the encoding noise associated with each mechanism. To test this hypothesis further, F0 difference limens (DLF0s) were measured in six normal-hearing listeners using sequentially presented groups of harmonics. The two groups of harmonics presented on each trial were bandpass filtered into the same or different spectral regions, in such a way that both groups contained mainly resolved harmonics, both groups contained only unresolved harmonics, or one group contained mainly resolved and the other only unresolved harmonics. Three spectral regions (low: 600-1150 Hz, mid: 1400-2500 Hz, or high: 3000-5250 Hz) and two nominal F0s (100 and 200 Hz) were used. The DLF0s measured in across-region conditions were well accounted for by a model assuming only two sources of internal noise: the encoding noise estimated on the basis of the within-region results plus a constant noise associated with F0 comparisons across different spectral regions, independent of resolvability. No evidence for an across-pitch-mechanism translation noise was found. A reexamination of previous evidence for the existence of such noise suggests that the present negative outcome is unlikely to be explained by insufficient measurement sensitivity or an unusually large across-region comparison noise in the present study. While the results do not rule out the possibility of two separate pitch mechanisms, they indicate that the F0s of sequentially presented resolved and unresolved harmonics can be compared internally at no or negligible extra cost.  相似文献   

13.
朱斯语  姬培锋  杨军 《应用声学》2017,36(6):481-489
为了客观地评价民族乐器与西洋乐器在听觉感知方面的差异,本文利用15种典型的中西方乐器声样本,建立了与音色、响度和音色明亮度有关的15种乐器的感知空间模型,通过这些模型可以预测不同乐器在音高、响度一定时,音色明亮度的感知情况。此外,根据已建立的感知空间模型分别对比弹拨乐器、拉弦乐器和不同类型的吹奏乐器中三种听觉感知属性的变化差异。结果表明,对于中西方典型乐器,音色明亮度随响度的增加而增大,但是响度对音色明亮度的影响程度受到音域和响度范围的影响。民族乐器的音色明亮度随音高的增加而增大,但是西洋乐器的音色明亮度并没有随音高的增加而发生明显的变化。  相似文献   

14.
It is hypothesized that older listeners are more likely than younger listeners to be impaired when asked to make intensity judgments about target tones embedded in rapidly presented auditory sequences. This study examined this hypothesis by asking listeners ranging in age from 19 to 74?yr to make judgments of intensity based on narrowband noise bursts varying in frequency and intensity. In two experiments, listeners made intensity judgments of target bursts alone or embedded in sequences of bursts. In the first experiment, one of four fixed sequences was presented and had to be identified. In the second experiment, pre- or post-trial bursts acted as cues that identified the frequency of the target burst in the sequence. In both experiments, intensity discrimination thresholds for single bursts were good predictors of performance with sequences and were little affected by age. Significant negative relationships between age and accuracy were observed when single sequences had to be identified or a post-trial cue was used, but no age effects were apparent when a pre-trial cue was used. These data are interpreted as being consistent with previous suggestions that the aging process results in a decline in auditory memory capacity and/or internally generated selective attention.  相似文献   

15.
To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst–useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.  相似文献   

16.
Two experiments investigated the role of the regularity of the frequency spacing of harmonics, as a separate factor from harmonicity, on the perception of the virtual pitch of a harmonic series. The first experiment compared the shifts produced by mistuning the 3rd, 4th, and 5th harmonics in the pitch of two harmonic series: the odd-H and the all-H tones. The odd-H tone contained odd harmonics 1 to 11, plus the 4th harmonic; the all-H tone contained harmonics 1 to 12. Both tones had a fundamental frequency of 155 Hz. Pitch shifts produced by mistuning the 3rd harmonic, but not the 4th and 5th harmonics, were found to be significantly larger for the odd-H tone than for the all-H tone. This finding was consistent with the idea that grouping by spectral regularity affects pitch perception since an odd harmonic made a larger contribution than an adjacent even harmonic to the pitch of the odd-H tone. However, an alternative explanation was that the 3rd mistuned harmonic produced larger pitch shifts within the odd-H tone than the 4th mistuned harmonic because of differences in the partial masking of these harmonics by adjacent harmonics. The second experiment tested these explanations by measuring pitch shifts for a modified all-H tone in which each mistuned odd harmonic was tested in the presence of the 4th harmonic, but in the absence of its other even-numbered neighbor. The results showed that, for all mistuned harmonics, pitch shifts for the modified all-H tone were not significantly different from those for the odd-H tone. These findings suggest that the harmonic relations among frequency components, rather than the regularity of their frequency spacing, is the primary factor for the perception of the virtual pitch of complex sounds.  相似文献   

17.
Numerical estimates of pitch for stimulation of electrodes along the 22-electrode array of the Cochlear Limited cochlear implant were obtained from 18 subjects who became deaf very early in life. Examined were the relationships between subject differences in pitch estimation, subject variables related to auditory deprivation and experience, and speech-perception scores for closed-set monosyllabic words and open-set Bamford-Kowal-Bench (BKB) sentences. Reliability in the estimation procedure was examined by comparing subject performance in pitch estimation with that for loudness estimation for current levels between hearing threshold and comfortable listening level. For 56% of subjects, a tonotopic order of pitch percepts for electrodes on the array was found. A deviant but reliable order of pitch percepts was found for 22% of subjects, and essentially no pitch order was found for the remaining 22% of subjects. Subject differences in pitch estimation were significantly related to the duration of auditory deprivation prior to implantation, with the poorest performance for subjects who had a longer duration of deafness and a later age at implantation. Subjects with no tonotopic order of pitch percepts had the lowest scores for the BKB sentence test, but there were no differences across subjects for monosyllabic words. Performance in pitch estimation for electrodes did not appear to be related to performance in the estimation procedure, as all subjects were successful in loudness estimation for current level.  相似文献   

18.
Frequency difference limens for pure tones (DLFs) and for complex tones (DLCs) were measured for four groups of subjects: young normal hearing, young hearing impaired, elderly with near-normal hearing, and elderly hearing impaired. The auditory filters of the subjects had been measured in earlier experiments using the notched-noise method, for center frequencies (fc) of 100, 200, 400, and 800 Hz. The DLFs for both impaired groups were higher than for the young normal group at all fc's (50-4000 Hz). The DLFs at a given fc were generally only weakly correlated with the sharpness of the auditory filter at that fc, and some subjects with broad filters had near-normal DLFs at low frequencies. Some subjects in the elderly normal group had very large DLFs at low frequencies in spite of near-normal auditory filters. These results suggest a partial dissociation of frequency selectivity and frequency discrimination of pure tones. The DLCs for the two impaired groups were higher than those for the young normal group at all fundamental frequencies (fo) tested (50, 100, 200, and 400 Hz); the DLCs for the elderly normal group were intermediate. At fo = 50 Hz, DLCs for a complex tone containing only low harmonics (1-5) were markedly higher than for complex tones containing higher harmonics, for all subject groups, suggesting that pitch was conveyed largely by the higher, unresolved harmonics. For the elderly impaired group, and some subjects in the elderly normal group, DLCs were larger for a complex tone with lower harmonics (1-12) than for tones without lower harmonics (4-12 and 6-12) for fo's up to 200 Hz. Some elderly normal subjects had markedly larger-than-normal DLCs in spite of near-normal auditory filters. The DLCs tended to be larger for complexes with components added in alternating sine/cosine phase than for complexes with components added in cosine phase. Phase effects were significant for all groups, but were small for the young normal group. The results are not consistent with place-based models of the pitch perception of complex tones; rather, they suggest that pitch is at least partly determined by temporal mechanisms.  相似文献   

19.
The discrimination of the fundamental frequency (fo) of pairs of complex tones with no common harmonics is worse than the discrimination of fo for tones with all harmonics in common. These experiments were conducted to assess whether this effect is a result of pitch shifts between pairs of tones without common harmonics or whether it reflects influences of spectral differences (timbre) on the accuracy of pitch perception. In experiment 1, pitch matches were obtained between sounds drawn from the following types: (1) pure tones (P) with frequencies 100, 200, or 400 Hz; (2) a multiple-component complex tone, designated A, with harmonics 3, 4, 8, 9, 10, 14, 15, and fo = 100, 200, or 400 Hz; (3) A multiple-component complex tone, designated B, with harmonics 5, 6, 7, 11, 12, 13, 16, and with fo = 100, 200 or 400 Hz. The following matches were made; A vs A, B vs B, A vs P, B vs P and P vs P. Pitch shifts were found between the pure tones and the complex tones (A vs P and B vs P), but not between the A and B tones (A vs B). However, the variability of the A vs B matches was significantly greater than that of the A vs A or B vs B matches. Also, the variability of the A vs P and B vs P matches was greater than that for the A vs B matches. In a second experiment, frequency difference limens (DLCs) were measured for the A vs A, B vs B, and A vs B pairs of sounds. The DLCs were larger for the A vs B pair than for A vs A or B vs B. The results suggest that the poor frequency discrimination of tones with no common harmonics does not result from pitch shifts between the tones. Rather, it seems that spectral differences between tones interfere with judgements of their relative pitch.  相似文献   

20.
This study investigated possible similarities between the ability to identify pitches and the ability to identify loudnesses. Systematic training of musically naive subjects indicated that frequency identification performance improves at about the same rate as intensity identification performance. Examination of frequency and intensity identification behavior of musically trained subjects showed that their ability to code pitch information efficiently does not generalize to an ability to encode loudness information more efficiently than untrained subjects. Intensity identification training curves of musically trained and untrained subjects are similar, but final performance levels are below frequency identification performance levels exhibited by musically trained subjects, especially those with absolute pitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号